CONSTRUCTING FORMULAE

identify processes in calculations.
generalise using letters and simplify (where possible)

- 1. (a) find the cost of a car repair requiring £180 of parts and 3 hours of labour at £35 per hour.
 - (b) write a formula for the cost, £C, where £p is the cost of parts and t hours of labour are charged at £n per hour.

2. CAR HIRE CHARGES

minimum charge: £20 per day

mileage charge: first 200 miles no charge

over 200 miles each extra mile 20p

- (a) Find the cost of a 6 day hire, travelling 500 miles.
- (b) Write a formula for the cost, £C, of hiring a car for d days, travelling n miles where n > 200.

3. Prices for hiring a holiday cottage are shown.

SEASON	initial cost for 4 guests	Cost for each additional guest
Summer	£300	£45
Spring/Autumn	£225	£35

- (a) Find the cost of hire in Spring for 6 guests.
- (b) Write a formula for the cost, £C, of n guests in Summer, where n is greater than 4.
 FULLY simplify this expression.

4. The cost of posting a parcel depends on weight and delivery time.

Delivery Time	Cost	
by 10am next day	£18 for 10kg + 80p for each extra kg	
by noon next day	£14 for 10kg + 70p for each extra kg	
by 5pm next day	£12 for 10kg + 50p for each extra kg	

- (a) Calculate the cost of a 16 kg parcel for delivery by noon the next day.
- (b) Write a formula for the cost, £C, of a parcel weight w kg, where w is greater than 10.
 The parcel is to be delivered by 10am the next day.
 FULLY simplify this expression.

PATTERNS

identify links between term and pattern.
generalise for nth term and simplify (where possible)

5.
$$1^{3} + 2^{3} = \frac{2^{2} \times 3^{2}}{4}$$
$$1^{3} + 2^{3} + 3^{3} = \frac{3^{2} \times 4^{2}}{4}$$
$$1^{3} + 2^{3} + 3^{3} + 4^{3} = \frac{4^{2} \times 5^{2}}{4}$$

Write an expression for:

(a)
$$1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3$$

(b)
$$1^3 + 2^3 + \dots + n^3$$

6. The sum of consecutive odd numbers starting from 3 can be written:

4 terms
$$3+5+7+9 = 4 \times 6$$

5 terms $3+5+7+9+11 = 5 \times 7$
6 terms $3+5+7+9+11+13 = 6 \times 8$

- (a) Write 3+5+7+.....+25 in the same way.
- (b) Write a formula for the sum of the first n terms of this sequence.

7. The odd numbers 1, 3, 5, 7.... can be written:

$$1^{st}$$
 odd number $1 = 1^2 - 0^2$
 2^{nd} odd number $3 = 2^2 - 1^2$

- 3^{rd} odd number $5 = 3^2 2^2$
- (a) Write the 4th odd number in the same way.
- (b) Express 19 in the same way.
- (c) Write a formula for the n^{th} odd number. FULLY simplify this expression.

8. The sequence 15, 21, 27.... can be written:

$$1^{st}$$
 term $15 = 4^2 - 1^2$
 2^{nd} term $21 = 5^2 - 2^2$
 3^{rd} term $27 = 6^2 - 3^2$

- (a) Write the 7^{th} term in the same way.
- (b) Write a formula for the nth term. FULLY simplify the expression.

9. The sequence 4,8,12.... can be written:

$$1^{st}$$
 term $4 = 2^2 - 0^2$
 2^{nd} term $8 = 3^2 - 1^2$
 3^{rd} term $12 = 4^2 - 2^2$

- (a) Write the 9th term in the same way.
- (b) Write a formula for the nth term. FULLY simplify the expression.

10. The sequence 6, 18, 36.... can be written:

$$1^{st}$$
 term $6 = 2^3 - 1^3 - 1$
 2^{nd} term $18 = 3^3 - 2^3 - 1$
 3^{rd} term $36 = 4^3 - 3^3 - 1$

- (a) Write the 4th term in the same way.
- (b) Write a formula for the nth term. FULLY simplify the expression.

CONSTRUCTING FORMULAE

identify processes in calculations.
generalise using letters and simplify (where possible)

1. (a) find the cost of a car repair requiring £180 of parts and 3 hours of labour at £35 per hour.

£180 + £35 \times 3 = £285

(b) write a formula for the cost, £C, where £p is the cost of parts and C = p + nt thours of labour are charged at £n per hour.

2. CAR HIRE CHARGES

minimum charge: £20 per day

mileage charge: first 200 miles no charge

over 200 miles each extra mile 20p

- (a) Find the cost of a 6 day hire, travelling 500 miles. $£20 \times 6 + £0.2 \times (500 200) = £180$
- (b) Write a formula for the cost, £C, of hiring a car for d days, travelling n miles where n > 200.

$$C = 20d + 0.2 (n - 200)$$

3. Prices for hiring a holiday cottage are shown.

SEASON	initial cost for 4 guests	Cost for each additional guest
Summer	£300	£45
Spring/Autumn	£225	£35

(a) Find the cost of hire in Spring for 6 guests.

£225 + £35
$$\times$$
(6 - 4) = £295

(b) Write a formula for the cost, £C, of n guests in Summer, where n is greater than 4.

FULLY simplify this expression.
=
$$300 + 45 \times (n - 4)$$

= $300 + 45n - 180$

$$C = 45n + 120$$

4. The cost of posting a parcel depends on weight and delivery time.

Delivery Time	Cost	
by 10am next day	£18 for 10kg + 80p for each extra kg	
by noon next day	£14 for 10kg + 70p for each extra kg	
by 5pm next day	£12 for 10kg + 50p for each extra kg	

(a) Calculate the cost of a 16 kg parcel for delivery by noon the next day.

£14 + £0.70
$$\times$$
 (16 - 10) = £18.20

(b) Write a formula for the cost, £C, of a parcel weight w kg, where w is greater than 10. $C = 18 + 0.80 \times (w - 10)$ The parcel is to be delivered by 10am the next day.

= 18 + 0.8w - 8

FULLY simplify this expression.

PATTERNS

identify links between term and pattern.
generalise for nth term and simplify (where possible)

5.
$$1^{3} + 2^{3} = \frac{2^{2} \times 3^{2}}{4}$$
$$1^{3} + 2^{3} + 3^{3} = \frac{3^{2} \times 4^{2}}{4}$$
$$1^{3} + 2^{3} + 3^{3} + 4^{3} = \frac{4^{2} \times 5^{2}}{4}$$

Write an expression for:

(a)
$$1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + \frac{7^2 \times 8^2}{4}$$

(b) $1^3 + 2^3 + \dots + n^3 + \frac{n^2 (n+1)^2}{4}$

6. The sum of consecutive odd numbers starting from 3 can be written:

4 terms
$$3+5+7+9 = 4 \times 6$$

5 terms $3+5+7+9+11 = 5 \times 7$
6 terms $3+5+7+9+11+13 = 6 \times 8$

- (a) Write 3+5+7+....+25 in the same way. 12×14
- (b) Write a formula for the sum of the first n terms of this sequence. n(n+2)

7. The odd numbers 1,3,5,7.... can be written:

$$1^{st}$$
 odd number $1 = 1^2 - 0^2$
 2^{nd} odd number $3 = 2^2 - 1^2$
 3^{rd} odd number $5 = 3^2 - 2^2$

$$7 = 4^2 - 3^2$$

- (a) Write the 4th odd number in the same way.
- (b) Express 19 in the same way. $19 = 10^2 9^2$
- (c) Write a formula for the nth odd number.

8. The sequence 15, 21, 27.... can be written:

$$1^{st}$$
 term $15 = 4^2 - 1^2$
 2^{nd} term $21 = 5^2 - 2^2$
 3^{rd} term $27 = 6^2 - 3^2$

- (a) Write the 7^{th} term in the same way. $51 = 10^2 7^2$
- (b) Write a formula for the nth term.

FULLY simplify the expression.
$$(n+3)^2 - n^2$$

$$= n^2 + 6n + 9 - n^2$$

$$= 6n + 9$$

9. The sequence 4,8,12.... can be written:

$$1^{st}$$
 term $4 = 2^2 - 0^2$
 2^{nd} term $8 = 3^2 - 1^2$
 3^{rd} term $12 = 4^2 - 2^2$

- (a) Write the 9^{th} term in the same way. $36 = 10^2 8^2$

10. The sequence 6, 18, 36.... can be written:

$$1^{st}$$
 term $6 = 2^3 - 1^3 - 1$
 2^{nd} term $18 = 3^3 - 2^3 - 1$
 3^{rd} term $36 = 4^3 - 3^3 - 1$

(a) Write the 4th term in the same way.

= $n^3 + 3n^2 + 3n + 1$

(b) Write a formula for the n^{th} term. $60 = 5^3 - 4^3 - 1$

FULLY simplify the expression. $(n+1)^3 - n^3 - 1$ $(n+1)^3 = n^3 + 3n^2 + 3n + 1 - n^3 - 1$ $= (n+1)(n+1)(n+1) = 3n^2 + 3n$ $= (n+1)(n^2 + 2n + 1) = 3n(n+1)$ $= n(n^2 + 2n + 1) + 1(n^2 + 2n + 1)$ $= n^3 + 2n^2 + n + n^2 + 2n + 1$