CHAPTER 8: EQUATIONS and INEQUATIONS

SIMPLE EQUATIONS: 'cover-up' type isolate the term with the letter

(1)
$$2x - 3 = 11$$

(2)
$$21 = 6 + 5a$$

$$5a = 15$$

$$a = 3$$

$$(3)$$
 17 - 3w = 5

$$3w = 12$$

$$w = 4$$

(4)
$$^{1}/_{2}h - 3 = 2$$

$$^{1}/_{2}h = 5$$

LETTERS ON BOTH SIDES - get letters on one side

(1)
$$5x - 2 = 2x + 10$$

$$3x - 2 = 10$$

$$3x = 12$$

$$x = 4$$

(1) 5x - 2 = 2x + 10 subtract 2x from each side

10 add 2 to each side

3x = 12 divide each side by 3

(2)
$$2 + 3n = 5 - 4n$$

$$2 + 7n = 5$$

$$7n = 3$$

$$n = \frac{3}{7}$$

2 + 3n = 5 - 4n add 4n to each side

2 + 7n = 5 subtract 2 from each side

7n = 3 divide each side by 7

EQUATIONS and negatives

(1)
$$17 - 2y = 3$$
 subtract 17 from each side $-2y = -14$ divide each side by -2 $y = 7$

(2)
$$8 + 2n = 6 - 3n$$
 add $3n$ to each side
 $8 + 5n = 6$ subtract 8 from each side
 $5n = -2$ divide each side by 5
 $n = -\frac{2}{5}$

EQUATIONS with fractions

first remove fractions: multiply by the denominator.

(1)
$$\frac{x}{2} = 5$$
 multiply by 2 $x = 10$ (2) $\frac{x-3}{4} = -2$ multiply by 4 $x - 3 = -8$ $x = -5$

NOTE: same equations

$$\frac{1}{2}x = 5$$
 $\frac{1}{4}(x-3) = -2$

BRACKET BREAKING

$$a \times (b + c) = a \times b + a \times c$$

(1)
$$3p(2p+r)$$

= $6p^2 + 3pr$

(2)
$$2a (3a - b + 5)$$

= $6a^2 - 2ab + 10a$

signs change when multiplying by a negative term:

$$(3) -3 (2w - 3y)$$

= $-6w + 9y$

$$(4) -n (4n + 5m)$$
$$= -4n^2 - 5mn$$

EXPRESSIONS: remove brackets then simplify

(1)
$$2a + 3a(2 - 3a)$$

= $2a + 6a - 9a^2$
= $8a - 9a^2$

no sign change

sign change

EQUATIONS: remove brackets then solve

(1)
$$2(w + 6) = 5(w - 3)$$

 $2w + 12 = 5w - 15$
 $12 = 3w - 15$
 $27 = 3w$
 $w = 9$

(2)
$$3y = 14 - 2(y - 3)$$

 $3y = 14 - 2y + 6$
 $3y = 20 - 2y$
 $5y = 20$
 $y = 4$ page 25

INEQUALITIES (INEQUATIONS)

- greater than
- eq. 7 > 3
- ≥ greater than or equal to
- < less than

- eg. 3 < 7
- ≤ less than or equal to

solve for x = 1, 2, 3, 4, 5, 6

- x = 5,6
- x = 4.5.6
- (1) x > 4 (2) $x \ge 4$ (3) x < 4x = 1,2,3

follow the same rules as equations

(1) 5x - 4 < 6

5x < 10

x < 2

(2) $2x + 7 \le 1$

2x ≤ -6

x ≤ -3

(3) 5x < 3x + 10

2x < 10

x < 5

(4) $2x \ge 20 - 3x$

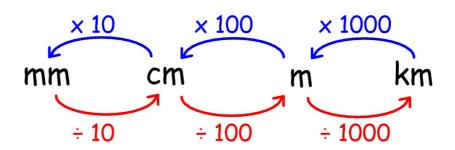
5x ≥ 20

x ≥ 4

x or ÷ by a negative: reverse the inequality sign

(i) $5x \ge 30$

 $x \ge 6$

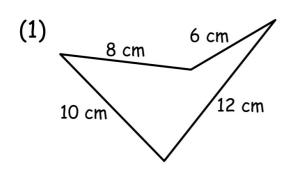

no sign change sign change

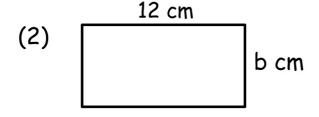
(ii) $-5x \ge 30$

x < -6

CHAPTER 9: LENGTH and PYTHAGORAS' THEOREM

LENGTH UNITS multiply going to smaller units

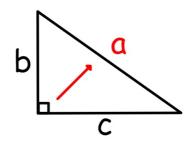



divide going to larger units

$$18 \text{ mm} \div 10 = 1.8 \text{ cm}$$
 $0.7 \text{ m} \times 100 = 70 \text{ cm}$
 $3.4 \text{ m} \times 100 = 340 \text{ cm}$ $520 \text{ cm} \div 100 = 5.20 \text{ m}$
 $40 \text{ m} \div 1000 = 0.040 \text{ km}$ $0.2 \text{ km} \times 1000 = 200 \text{ m}$

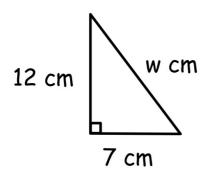
PERIMETER

The total distance around the outside edge.



rectangle perimeter 40 cm

PYTHAGORAS' THEOREM


For right-angled triangles only:

$$a^2 = b^2 + c^2$$

HYPOTENUSE (largest side) is opposite the 90° angle.

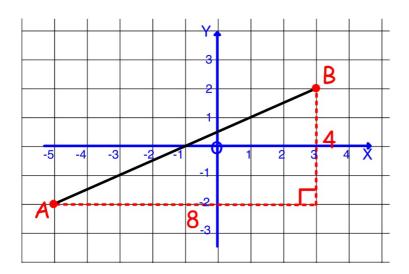
BIGGEST SIDE

$$w^2 = 12^2 + 7^2$$

= 144 + 49
= 193

$$w = \sqrt{193}$$

= 13.892...
 $w \approx 13.9$

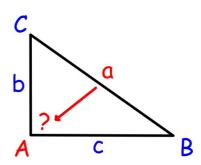

SMALLER SIDE

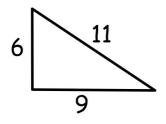
DISTANCE BETWEEN TWO POINTS

Plot the points.

Construct the right-angled triangle around them.

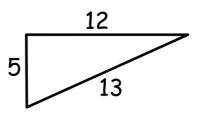
A(-5,-2) and B(3,2)




$$AB^2 = 8^2 + 4^2$$

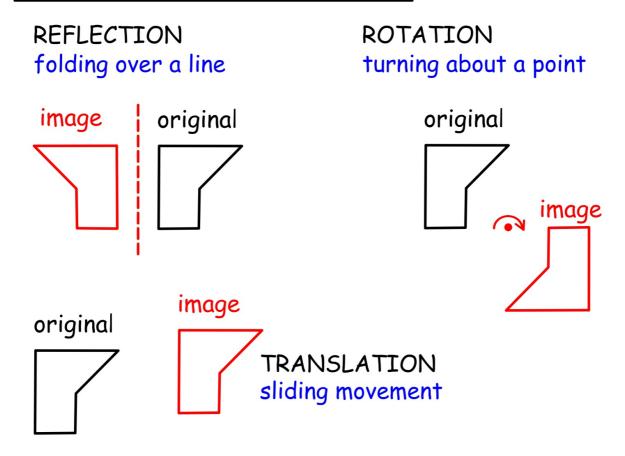
= 64 + 16
= 80

AB ≈ 8.9 units


CONVERSE OF PYTH. THM.

if
$$a^2 = b^2 + c^2$$

then $\triangle ABC$ is right-angled

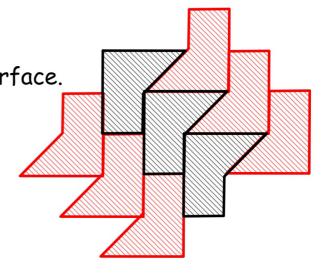


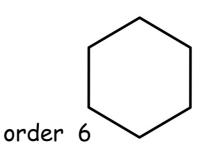
$$6^2 + 9^2 \neq 11^2$$

 Δ is not right-angled

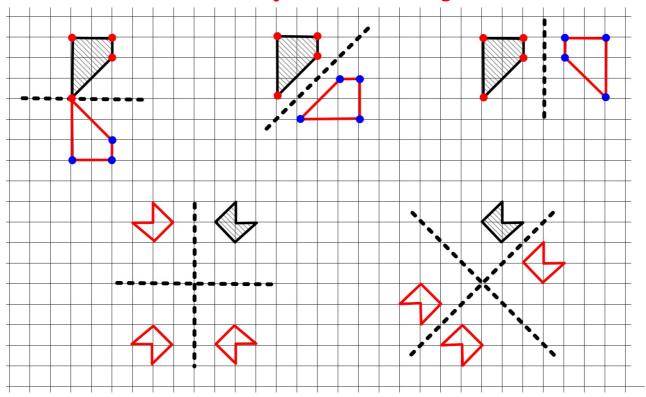
$$5^2 + 12^2 = 13^2$$

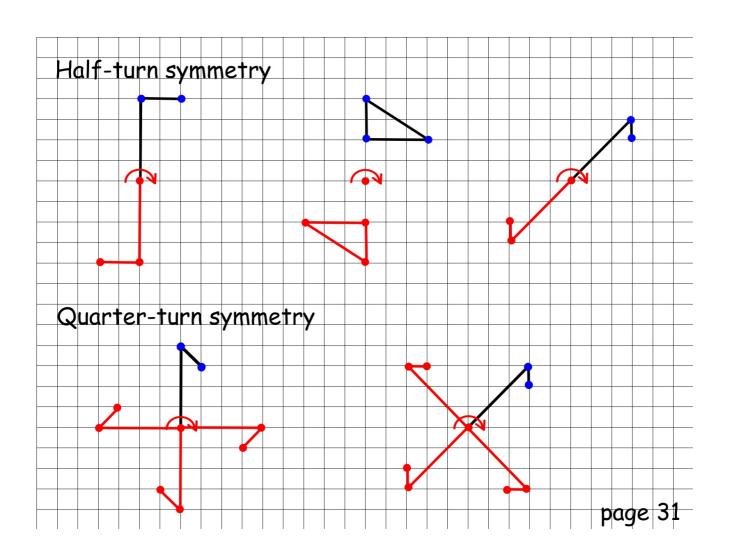
 \triangle is right-angled

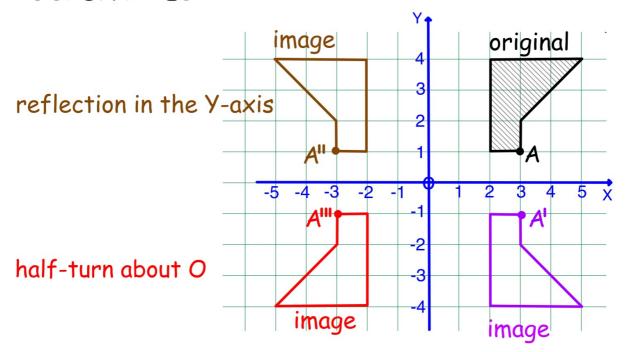

CHAPTER 10: TRANSFORMATIONS


No gaps or overlap.

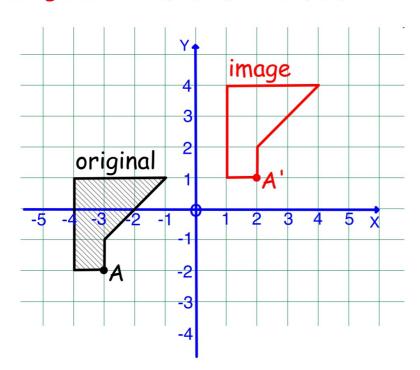
Can extend in any direction.


ORDER OF ROTATIONAL SYMMETRY


The number of times a shape fits itself under one turn.


Line symmetry

Reflect the corners and join for the image.



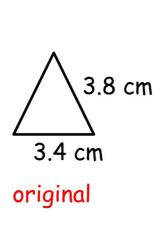
COORDINATES

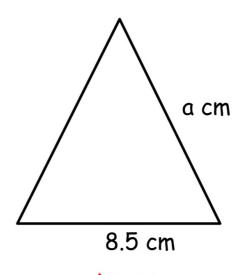
reflection in the X-axis

image under $A(-3,-2) \rightarrow A'(2,1)$

all points move 5 right , 3 up

ENLARGEMENT and REDUCTION


Angles are unchanged.

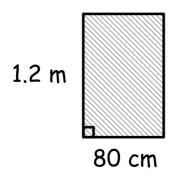

Sides are enlarged/reduced by a SCALE FACTOR.

ENLARGEMENT: SF > 1
REDUCTION: 0 < SF < 1

The shape with the dimension to be found is the image.

Scale Factor =
$$\frac{\text{image size}}{\text{original size}}$$

image


$$SF = \frac{8.5}{3.4} = 2.5$$

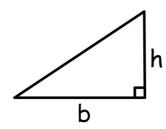
$$a = 3.8 \times 2.5 = 9.5$$

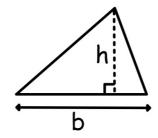
CHAPTER 11: AREA

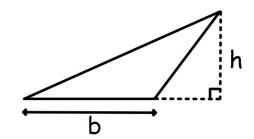
RECTANGLE A = Ib

match length units to required area units

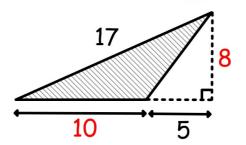
$$A = lb$$
 $A = lb$
= 1.2 × 0.8 = 120 × 80
= 0.96 m² = 9600 cm²

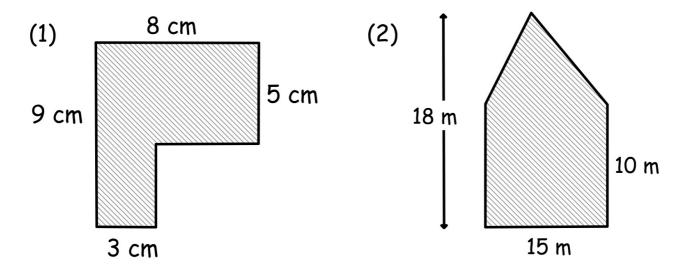

TRIANGLES

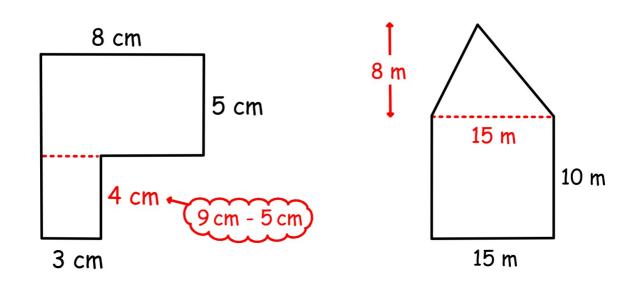

$$A = \frac{1}{2} bh$$


The height and the base are at 90°.

(altitude)


(perpendicular)


use base and height - ignore extra numbers

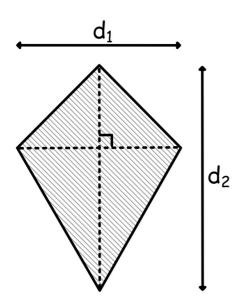


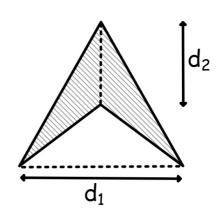
$$A = {}^{1}/_{2} \text{ bh}$$

= 10 x 8 ÷ 2
= 40 units²

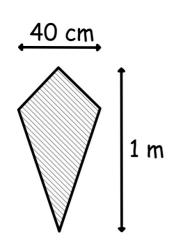
COMPOSITE SHAPES

Formed from rectangles and triangles

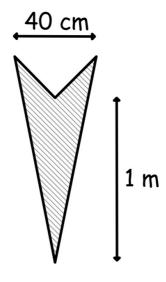



$$A = lb$$
 $A = lb$ $A = lb$ $A = 1/2 bh$
 $= 8 \times 5$ $= 4 \times 3$ $= 15 \times 10$ $= 15 \times 8 \div 2$
 $= 40 \text{ cm}^2$ $= 12 \text{ cm}^2$ $= 150 \text{ m}^2$ $= 60 \text{ m}^2$
 $= 40 \text{ cm}^2 + 12 \text{ cm}^2$ $= 150 \text{ m}^2 + 60 \text{ m}^2$
 $= 52 \text{ cm}^2$ $= 210 \text{ m}^2$ page 35

KITE and RHOMBUS


$A = \frac{1}{2}$ the product of the diagonals

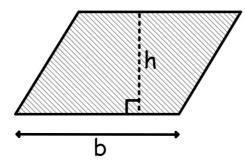
$$A = {}^{1}/_{2} d_{1}d_{2}$$

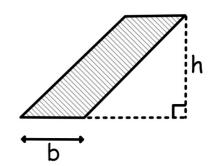


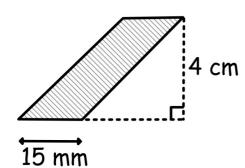
Ensure the units match.

$$A = \frac{1}{2} d_1 d_2$$

= 40 × 100 ÷ 2
= 2000 cm²

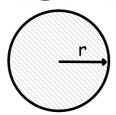


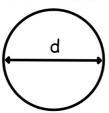

$$A = {}^{1}/_{2} d_{1}d_{2}$$
$$= 0.4 \times 1 \div 2$$
$$= 0.2 m^{2}$$


or

PARALLELOGRAM

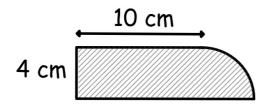
$$A = bh$$




$$A = bh$$
 or $A = bh$
= 1.5×4 = 15×40
= 6 cm^2 = 600 mm^2

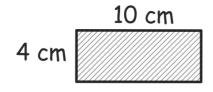
CIRCLES

AREA: $A = \pi r^2$


Remember $r = \frac{1}{2} d$ and $\pi \approx 3.14$

$$A = \pi r^2$$

= 3.14 × 4 × 4
= 50.24 cm²

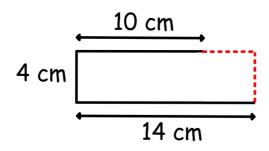

$$C = \pi d$$

= 3.14 × 8
= 25.12 cm

COMPOSITE SHAPES

Identify the rectangle and circle parts.

AREA:


$$A = 1b$$

= 4×10
= 40 cm^2

$$A = \pi r^2$$

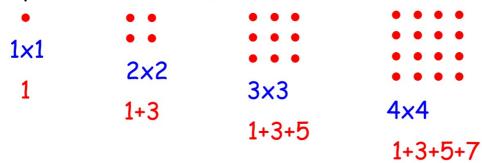
= 3.14×4×4
= 50.24 cm²

$$A = 50.24 \div 4$$

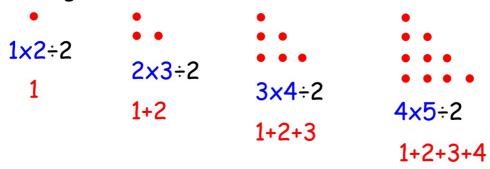
= 12.56 cm²

Total Area = $12.56 + 40 = 52.56 \text{ cm}^2$

PERIMETER:


$$C = \pi d$$
$$= 3.14 \times 8$$

$$= 6.28 cm$$


Perimeter = 4 + 10 + 14 + 6.28 = 34.28 cm

CHAPTER 12: SEQUENCES

square numbers 0, 1, 4, 9, 16, 25 ...

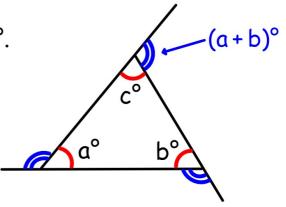
triangular numbers 0, 1, 3, 6, 10, 15 ...

GENERALISE

- find (a) a formula for the number of matches.
 - (b) the number of matches for 10 triangles.
 - (c) the number of triangles for 51 matches.

Formula:
$$M = 2T + 1$$

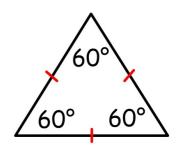
(b)
$$M = 2 \times 10 + 1 = 21$$


(c)
$$2T + 1 = 51$$

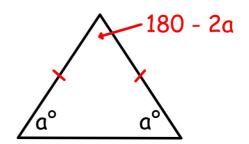
 $2T = 50$
 $T = 25$

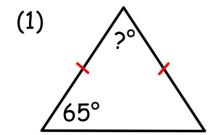
CHAPTER 13: TRIANGLES

INTERIOR angles add up to 180°.



- interior angles
- exterior angles


EQUILATERAL TRIANGLES


Three equal sides, three equal angles of 60°.

ISOSCELES TRIANGLES

Two equal sides, two equal angles.

CHAPTER 14: RATIO and PROPORTION

RATIO compare quantities - no units, fully simplify

(1) 6 kg: 900 g same units

= 6000 g : 900 g divide by 100

= 60 : 9 divide by 3

= 20:3

(2) Mix yellow and blue paint in the ratio 2:3 How much blue paint for 8 tins of yellow?

Y: B yellow tins: $8 \div 2 = 4$

= 2:3 multiply by 4

= 8:12 <u>12 tins of blue</u>

SHARING

Tim and Tom buy 60 chocolates.
Tim contributes £3 and Tom £2.

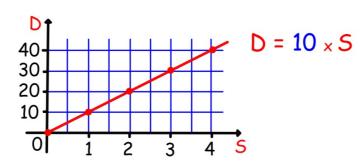
How many chocolates should each get?

share 60 chocs in ratio 3:2

number of shares 3 + 2 = 5 shares

one share $60 \div 5 = 12$ chocs

Tim 3 shares $3 \times 12 = 36$ chocs


Tom 2 shares $2 \times 12 = 24$ chocs

DIRECT PROPORTION:

DISTANCE and SPEED are directly proportional $2 \times \text{speed}$ results in $2 \times \text{distance travelled}$

One quantity is a multiple of the other.

GRAPH: a straight line through the origin

Ten books cost £36.

(a) Find the cost of seven books.

(b) How many books for £54?

Rate:) £3.60 per book

(a) 10 books — £36

1 book — £36 ÷ 10

7 books — £36 ÷ 10 \times 7 = £25.20

(b) £36 \longrightarrow 10 books £54 ÷ £3.60 \longrightarrow 10 ÷ 36 books

£54 \longrightarrow 10 ÷ 36 \times 54 = 15 books

INVERSE PROPORTION:

TIME and SPEED are inversely proportional $2 \times \text{speed}$ results in $\frac{1}{2} \times \text{time taken}$

The quantities multiply to the same product.

$$S \times T = 12$$

A school has money to buy 50 books at £18 each. Price increases to £20. How many books can be bought?

50 books at £18 each total money =
$$50 \times £18 = £900$$

£900 at £20 each N° books = $900 \div 20 = 45$ books

OR

18 £/book
$$\longrightarrow$$
 50 books
1 £/book \longrightarrow 50 x 18 (900 books)
20 £/book \longrightarrow 50 x 18 ÷ 20 = 45 books