CHAPTER 15: FRACTIONS and PERCENTAGES

$$33^{1}/_{3}\%$$
 50% $66^{2}/_{3}\%$ 75% $\frac{1}{_{3}}$ $\frac{1}{_{2}}$ $\frac{2}{_{3}}$ $\frac{3}{_{4}}$

(1) Find 4% of 250 kg

non-calculator:

(2) Find
$$66^2/_3\%$$
 of 18 m

$$18 \div 3 = 6 \text{ m}$$
 $6 \times 2 = 12 \text{ m}$

 $^{2}/_{3}$ of 18 m

by calculator:

(3) Find 35% of £240 non-calculator:

10% £240 ÷ 10 = £24

by calculator:

EXPRESSING CHANGE AS A PERCENTAGE

$$% CHANGE = \frac{CHANGE}{START VALUE} \times 100\%$$

A £15000 car is resold for £12000. Find the % loss.

actual loss = £15000 - £12000 = £3000
% loss =
$$\frac{loss}{start \ value} \times 100\%$$

= $\frac{£3000}{£15000} \times 100\%$
= 20%

SWITCHING BETWEEN FORMS

EQUAL FRACTIONS

$$^{3}/_{4} = ^{3\times6}/_{4\times6} = ^{18}/_{24}$$

SIMPLIFYING:

$$^{18}/_{24} = ^{18 \div 6}/_{24 \div 6} = ^{3}/_{4}$$

MIXED NUMBERS

$$2^{3}/_{4} = 2 + \frac{3}{_{4}}$$

= $\frac{8}{_{4}} + \frac{3}{_{4}}$
= $\frac{11}{_{4}}$

$$\frac{2^{3}/_{4}}{4 \times 2 + 3} = 11$$

$$^{11}/_4 = ^{8}/_4 + ^{3}/_4$$

= 2 + $^{3}/_4$
= $2^{3}/_4$

$$\frac{11}{4} = 2^{3}/4$$

$$11 \div 4 = 2 R 3$$

ADD and SUBTRACT requires a common denominator, the LCM (least common multiple)

$$(1) \frac{2}{5} + \frac{3}{10}$$

$$= \frac{4}{10} + \frac{3}{10}$$

$$= \frac{7}{10}$$

$$(2) \frac{5}{6} - \frac{2}{9}$$

$$= \frac{15}{18} - \frac{4}{18}$$

$$= \frac{11}{18}$$

for mixed numbers treat fractions and whole numbers separately.

(3)
$$12^{5}/_{6}$$
 - $3^{2}/_{9}$
= $12^{15}/_{18}$ - $3^{4}/_{18}$
= $9^{11}/_{18}$ page 46

MULTIPLY
$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

"of" means x change mixed numbers to "top-heavy" fractions

(1)
$$\frac{3}{10}$$
 of $2\frac{3}{4}$ (2) $1\frac{2}{3} \times 3\frac{1}{5}$
= $\frac{3}{10} \times \frac{11}{4}$ = $\frac{5}{3} \times \frac{16}{5}$
= $\frac{80}{15}$
= $\frac{16}{3}$
= $5\frac{1}{3}$

DIVIDE
$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$

RECIPROCAL

(1)
$${}^{5}/_{6} \div {}^{3}/_{7}$$
 (2) ${}^{1}{}^{2}/_{7} \div {}^{4}$
= ${}^{5}/_{6} \times {}^{7}/_{3}$ = ${}^{9}/_{7} \div {}^{4}/_{1}$
= ${}^{35}/_{18}$ = ${}^{9}/_{7} \times {}^{1}/_{4}$
= ${}^{17}/_{18}$ = ${}^{9}/_{28}$

CHAPTER 16: 2D SHAPES

POLYGON a many sided shape.

In a REGULAR polygon all sides and angles are equal.

REGULAR PENTAGON

angle at the centre $360^{\circ} \div 5 = 72^{\circ}$

isosceles \triangle 180° - 72° = 108°

 $108^{\circ} \div 2 = 54^{\circ}$

interior angle $54^{\circ} \times 2 = 108^{\circ}$

QUADRILATERALS: angle sum 360°

TRAPEZIUM:

PARALLELOGRAM: a trapezium

RECTANGLE: a parallelogram

SQUARE: a rectangle

KITE

RHOMBUS a kite and a parallelogram

CHAPTER 17: 3D SHAPES

PRISM

A 3D solid which has the same cross-section throughout its length.

PRISM
$$V = AL$$

(or $V = Ah$)

PYRAMID
$$V = \frac{1}{3} A h$$

$$A = \frac{1}{2} bh$$

= 12 x 8 ÷ 2
= 48 cm²

$$V = AL$$

= 48 x 20
= 960 cm³

$$A = 1b$$

= 10 x 10
= 100 cm²

$$V = \frac{1}{3}Ah$$
= 100 x 12 ÷ 3
= 400 cm³

CYLINDER and CONE

V = Ah and $A = \pi r^2$

$$V = \pi r^2 h$$

$$V = \frac{1}{3}\pi r^2 h$$

$$V = \pi r^{2}h$$
= π × 6 × 6 × 20
= 2261.946...
≈ 2260 cm³

$$V = \frac{1}{3}\pi r^{2}h$$

$$= \pi \times 6 \times 6 \times 20 \div 3$$

$$= 753.982...$$

$$= \frac{754 \text{ cm}^{3}}{}$$

CUBOID

volume = length × breadth × height

volume = area of base x height

 $1000 \text{ cm}^3 = 1 \text{ litre}$

1000 ml = 1 litre

 $1 \, \text{ml} = 1 \, \text{cm}^3$

V = Ibh

 $= 15 \times 10 \times 8 \qquad = 150 \times 8$

 $8 \text{ cm} = 1200 \text{ cm}^3$

= 1.2 litres

V = Ah

 $= 1200 \text{ cm}^3$

(2) volume 1.2 litres

V = Ibh

 $1200 = 15 \times 10 \times h$

 $1200 = 150 \times h$

 $h = 1200 \div 150$

h = 8

SKELETON MODEL

shows edges - 'hidden' edges dotted.

cuboid

total length of edge: 12

$$30 \times 4 = 120 \text{ cm}$$

NET flattened out solid, showing the connected faces.

cuboid

$$5 \times 4 = 20 \text{ cm}^2$$

$$5 \times 2 = 10 \text{ cm}^2$$

$$4 \times 2 = 8 \text{ cm}^2$$

$$38 \text{ cm}^2 \times 2 = 76 \text{ cm}^2$$

 20 cm^2

5

4

CHAPTER 18: INFORMATION HANDLING 2

CONTINUOUS DATA can take any value DISCRETE DATA takes particular values

STATISTICAL DIAGRAMS

read information, make comparisons, identify trends

1800 tickets sold.

Month	Jan	Feb	Mar	<i>A</i> pril	May
Sales (£1000s)	20	40	30	10	20

PIE CHART

TOTAL SALES = 120

Jan, May
$$\frac{20}{120} \times 360^{\circ} = 60^{\circ}$$

Feb
$$\frac{40}{120} \times 360^{\circ} = 120^{\circ}$$

March
$$\frac{30}{120} \times 360^{\circ} = 90^{\circ}$$

April
$$\frac{10}{120} \times 360^{\circ} = 30^{\circ}$$

STEM-AND-LEAF DIAGRAM

Prepare unordered first

5.6, 3.9, 6.4, 4.5, 3.8, 5.3, 6.7, 3.9, 5.5, 4.8, 5.0, 5.8, 6.2, 4.2, 6.1, 5.3, 4.9, 7.3, 4.4

unordered

ordered

BACK-TO-BACK STEM-AND-LEAF

boys					girls					
15	15	21	22	23	11	19	22	25	25	
25	26	31	33	34	29	31	3 4	3 <mark>6</mark>	38	
37	39	41	46	46	40	46	49	5 <mark>0</mark>	5 <mark>0</mark>	

SCATTER DIAGRAMS

If the points plotted lie along a line there is a relationship between the quantities.

no correlation

positive correlation

negative correlation

PROBABILITY

$$P(A) = \frac{\text{number of outcomes involving } A}{\text{number of outcomes possible}}$$

$$P = 0$$
 impossible $P = 1$ certain

Expected outcomes = $P(A) \times number of trials$

(1) roll two dice, score a total of five.

36 outcomes possible: 4 outcomes total five:

P(five) =
$$\frac{4}{36} = \frac{1}{9}$$

(2) Roll the two dice 18 times. How many fives expected? number of fives = $\frac{1}{9} \times 18 = 2$