MATHEMATICS NATIONAL 5 NOTES
 $\times \quad \pm$ $A=\pi r^{2}$

 x

 x

 \pm

 \pm

 $A=\pi r^{2}$

 $A=\pi r^{2}$
 \leq

 x
 π
 $$
V=I b h
$$

 十

INDEX:

page 1 Chapter 1: Fractions
page $3 \quad$ Chapter 2: Percentages
page $5 \quad$ Chapter 3: Surds
page 7 Chapter 4: Indices, including Scientific Notation and Significant Figures
page $9 \quad$ Chapter 5: Algebraic Expressions
page 13 Chapter 6: Straight Line, including scatter diagram
page 16 Chapter 7: Arcs and Sectors
page 17 Chapter 8: Volumes of Solids
page 19 Chapter 9: Equations and Inequalities, including Transposing Formulae
page 22 Chapter 10: Simultaneous Equations
page $25 \quad$ Chapter 11: Quadratic Equations
page 32 Chapter 12: Pythagoras' Theorem
page 34 Chapter 13: Angles and Shape
page 36 Chapter 14: Properties of the Circle
page $38 \quad$ Chapter 15: Similar Shapes
page 40 Chapter 16: Trigonometry: Right-Angled Triangles
page 42 Chapter 17: Trigonometry: Graphs and Equations
page 48 Chapter 18: Trigonometry: Triangle Formulae
page 51 Chapter 19: Vectors
page 53 Chapter 20: Statistics
© 2013 D R Turnbull
This material may be used for non-profit educational purposes only and must include this copyright notice.

FORMULAE LIST

The roots of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, a \neq 0$

Sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine rule: $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 b c \cos A \quad$ or $\quad \cos \mathrm{A}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 b c}$

Area of a triangle: \quad Area $=\frac{1}{2} a b \sin C$

Volume of a sphere: \quad Volume $=\frac{4}{3} \pi r^{3}$

Volume of a cone: \quad Volume $=\frac{1}{3} \pi r^{2} h$

Volume of a pyramid: \quad Volume $=\frac{1}{3} A h$

Volume of a cylinder: \quad Volume $=\pi r^{2} h$

Standard deviation: $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}}$, where n is the sample size.

CHAPTER 1: FRACTIONS

Simplify (cancel down):

$$
\frac{28}{36}=\frac{28 \div 4}{36 \div 4}=\frac{7}{9} \quad \text { divide by highest common factor, } \operatorname{HCF}(28,36)=4
$$

Mixed numbers and improper fractions (top heavy):

$$
4 \times 2+3=11
$$

$\mathbf{2} \frac{3}{4}=\mathbf{2}+\frac{3}{4}=\frac{\mathbf{8}}{\mathbf{4}}+\frac{\mathbf{3}}{4}=\frac{11}{4} \quad$ 'bottom' stays as 4

$$
11 \div 4=2 R 3
$$

Addition and Subtraction requires a common denominator:

$$
\begin{aligned}
& \frac{5}{6}-\frac{4}{9} \\
= & \frac{15}{18}-\frac{8}{18} \\
= & \frac{7 \times 3}{18}=\frac{15}{18} \quad
\end{aligned}
$$

Multiplication and Division requires no mixed numbers:

$$
\begin{aligned}
& \frac{a}{b} \times \frac{c}{d}=\frac{a \times c}{b \times d} \\
& \frac{3}{10} \times 2 \frac{a}{4} \div \frac{\mathbf{c}}{\mathbf{d}}=\frac{a}{b} \times \frac{\mathbf{d}}{\mathbf{c}} \\
= & \frac{3}{10} \times \frac{11}{4} \text { go 'top heavy' } \\
= & \frac{4}{5} \div \frac{7}{8} \\
= & =\frac{4}{5} \times \frac{8}{7} \quad \text { multiply by reciprocal } \\
& =\frac{32}{35}
\end{aligned}
$$

ORDER OF CALCULATION: \times and \div before + or to change the order use brackets BRACKETS FIRST!

Carry out separate calculations:

(1) $7 \frac{5}{6}-\frac{8}{9}$ of $2 \frac{3}{4}$
multiply first
$\frac{8}{9} \times \frac{11}{4} \quad$ of means multiply
$=\frac{88}{36} \quad$ fully simplify
$=\frac{22}{9}$
$=2 \frac{4}{9}$
(2) $\left(\frac{5}{6}-\frac{1}{2}\right) \div 1 \frac{3}{4}$
subtraction last
$7 \frac{5}{6}-2 \frac{4}{9}$
$=7 \frac{15}{18}-2 \frac{8}{18} \quad$ common denominator
$=5 \frac{7}{18}$
subtract whole numbers and fractions separately
$\frac{1}{3} \div 1 \frac{3}{4}$
$=\frac{1}{3} \div \frac{7}{4} \quad$ 'top-heavy' first
$=\frac{1}{3} \times \frac{4}{7} \quad$ multiply by reciprocal
$=\frac{4}{21}$

CHAPTER 2: PERCENTAGES

PERCENTAGE CHANGE

INCREASE: growth, appreciation, compound interest
DECREASE: decay, depreciation

$$
\begin{array}{lc}
\begin{array}{c}
\text { original } \\
\text { value }
\end{array} & \begin{array}{c}
\text { changed } \\
\text { value }
\end{array} \\
100 \% \\
+a \%
\end{array}(100+a) \% \text {.al }
$$

$$
100 \% \xrightarrow{-a \%}(100-a) \%
$$

For example,
8% increase: $100 \% \xrightarrow{+8 \%} 108 \%=1 \cdot 08$ multiply quantity by $1 \cdot 08$ for 8% increase 8% decrease $: 100 \% \xrightarrow{-8 \%} 92 \%=0.92$ multiply quantity by 0.92 for 8% decrease

REVERSING PERCENTAGE CHANGE

Divide by the factor which produced the increase.
(1) Including VAT of 20%, a radio costs $£ 96$. Find the original cost exclusive of VAT.

$$
\begin{aligned}
& 20 \% \text { VAT added } \\
& 100 \% \xrightarrow{+20 \%} 120 \%=1 \cdot 20
\end{aligned}
$$

$$
\begin{aligned}
£ x \times 1 \cdot 20 & =£ 96 \\
£ x & =£ 96 \div 1 \cdot 20 \\
& =£ 80
\end{aligned}
$$

non-calculator: $\quad 120 \% \xrightarrow{\div 12} 10 \% \xrightarrow{\times 10} 100 \%$

$$
£ 96 \div 12=£ 8 \quad £ 8 \times 10=£ 80
$$

(2) A camera costs $£ 120$ after a discount of 25% is applied. Find the original cost.

$$
\begin{array}{rlrl}
25 \% \text { discount subtracted } & \begin{array}{ll}
£ x \times 0 \cdot 75 & =£ 120 \\
100 \% \xrightarrow{-25 \%} & \\
& £ x 5 \%=0 \cdot 75
\end{array} & £ 120 \div 0 \cdot 75 \\
& =£ 160
\end{array}
$$

non-calculator:

$$
75 \%=\frac{3}{4}
$$

$$
\frac{3}{4} \xrightarrow{\div 3} \frac{1}{4} \xrightarrow{\times 4} \frac{4}{4}
$$

$$
£ 120 \div 3=£ 40 \quad £ 40 \times 4=£ 160
$$

COMPOUND PERCENTAGE CHANGE

appreciation and depreciation

(1) A $£ 240000$ house appreciates in value by 5% in 2007, appreciates 10% in 2008 and depreciates by 15% in 2009. Calculate the value of the house at the end of 2009.

	or
evaluate year by year	
year 1	

compound interest

(2) Calculate the compound interest on $£ 12000$ invested at 5% pa for 3 years.
$£ 12000 \times(1.05)^{3} \quad$ ie. $\times 1.05 \times 1 \cdot 05 \times 1 \cdot 05 \quad$ or evaluate year by year
$£ 12000 \times 1 \cdot 157625$
$=£ 13891 \cdot 50$
compound interest $=£ 13891 \cdot 50-£ 12000=£ 1891 \cdot 50$

EXPRESSING CHANGE AS A PERCENTAGE

$$
\% \text { change }=\frac{\text { change }}{\text { start }} \times 100 \%
$$

A $£ 15000$ car is resold for $£ 12000$. Find the percentage loss.

$$
\begin{aligned}
\text { loss } & =£ 15000-£ 12000=£ 3000 \\
\% \text { loss } & =\frac{3000}{15000} \times 100 \%=20 \%
\end{aligned}
$$

CHAPTER 3: SURDS

NUMBER SETS:

Natural numbers $\quad \mathrm{N}=\{1,2,3 \ldots\}$
Whole numbers $\quad \mathrm{W}=\{0,1,2,3 \ldots\}$
Integers $Z=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$

Rational numbers, Q , can be written as a division of two integers.
Irrational numbers cannot be written as a division of two integers.
Real numbers, R , are all rational and irrational numbers.

SURDS ARE IRRATIONAL ROOTS.
For example, $\sqrt{2}, \sqrt{\frac{5}{9}}, \sqrt[3]{16}$ are surds.
whereas $\sqrt{25}, \sqrt{\frac{4}{9}}, \sqrt[3]{-8}$ are not surds as they are $5, \frac{2}{3}$ and -2 respectively.

SIMPLIFYING ROOTS:

RULES:
 $\sqrt{m n}=\sqrt{m} \times \sqrt{n}$

$$
\sqrt{\frac{m}{n}}=\frac{\sqrt{m}}{\sqrt{n}}
$$

(1) Simplify $\sqrt{24} \times \sqrt{3}$
$\sqrt{24} \times \sqrt{3}$
$=\sqrt{72}$
$=\sqrt{36} \times \sqrt{2}$
36 is the largest square number which is a factor of 72
$=6 \times \sqrt{2}$
$=6 \sqrt{2}$
(2) Simplify $\sqrt{72}+\sqrt{48}-\sqrt{50}$

$$
\begin{aligned}
& \sqrt{72}+\sqrt{48}-\sqrt{50} \\
= & \sqrt{36} \times \sqrt{2}+\sqrt{16} \times \sqrt{3}-\sqrt{25} \times \sqrt{2} \\
= & 6 \sqrt{2}+4 \sqrt{3}-5 \sqrt{2} \\
= & 6 \sqrt{2}-5 \sqrt{2}+4 \sqrt{3} \\
= & \sqrt{2}+4 \sqrt{3}
\end{aligned}
$$

(3) Remove the brackets and fully simplify:
$\begin{array}{ll}(a) & (\sqrt{3}-\sqrt{2})^{2}\end{array} \quad$ (b) $(3 \sqrt{2}+2)(3 \sqrt{2}-2)$

$$
=(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2})
$$

$$
=\sqrt{3}(\sqrt{3}-\sqrt{2})-\sqrt{2}(\sqrt{3}-\sqrt{2}) \quad=3 \sqrt{2}(3 \sqrt{2}-2)+2(3 \sqrt{2}-2)
$$

$$
=\sqrt{9}-\sqrt{6}-\sqrt{6}+\sqrt{4} \quad=9 \sqrt{4}-6 \sqrt{2}+6 \sqrt{2}-4
$$

$$
=3-\sqrt{6}-\sqrt{6}+2 \quad=18-6 \sqrt{2}+6 \sqrt{2}-4
$$

$$
=5-2 \sqrt{6} \quad=14
$$

RATIONALISING DENOMINATORS:

Removing surds from the denominator.

Express with a rational denominator:
(1) $\frac{4}{\sqrt{6}}$
(2) $\frac{\sqrt{3}}{3 \sqrt{2}}$
$\frac{4}{\sqrt{6}}$

$$
\frac{\sqrt{3}}{3 \sqrt{2}}
$$

$=\frac{4 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} \quad \begin{aligned} & \text { multiply the 'top' and 'bottom' } \\ & \text { by the surd on the denominator }\end{aligned}$

$$
=\frac{\sqrt{3} \times \sqrt{2}}{3 \sqrt{2} \times \sqrt{2}}
$$

$$
=\frac{4 \sqrt{6}}{6}
$$

$$
=\frac{\sqrt{6}}{3 \times \sqrt{4}}
$$

$$
=\frac{2 \sqrt{6}}{3}
$$

$$
=\frac{\sqrt{6}}{6}
$$

CHAPTER 4: INDICES

base $\longrightarrow a^{n} \longleftarrow$ index or exponent

INDICES RULES: require the same base.

Examples:

$$
\begin{array}{cl}
a^{m} \times a^{n}=a^{m+n} & \frac{w^{2} \times w^{5}}{w^{3}}=\frac{w^{7}}{w^{3}}=w^{4} \\
a^{m} \div a^{n}=a^{m-n} \\
\left(a^{m}\right)^{n}=a^{m n} & \left(3^{5}\right)^{2}=3^{10} \\
(a b)^{n}=a^{n} b^{n} & \left(2 a^{3} b\right)^{2}=2^{2} a^{6} b^{2}=4 a^{6} b^{2} \\
a^{0}=1 & 5^{0}=1 \\
a^{1}=a & 5^{1}=5 \\
a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m} & 8^{\frac{4}{3}}=(\sqrt[3]{8})^{4}=2^{4}=16 \\
\frac{1}{a^{p}}=a^{-p} & 8^{-\frac{4}{3}}=\frac{1}{8^{\frac{4}{3}}}=\frac{1}{16}
\end{array}
$$

SCIENTIFIC NOTATION (STANDARD FORM)

Writing numbers in the form $a \times 10^{n}$
where $1 \leq a<10 \quad$ place the decimal point after the first non-zero digit and n is an integer numbers $\ldots-3,-2,-1,0,1,2,3 \ldots$.

$$
\begin{aligned}
\mathbf{3 2 8 0 0} & =3 \cdot 28 \times 10 \times 10 \times 10 \times 10=\mathbf{3} \cdot \mathbf{2 8} \times \mathbf{1 0}^{4} \\
\mathbf{0} \cdot \mathbf{0 0 0 3 2 8} & =3 \cdot 28 \div 10 \div 10 \div 10 \div 10=3 \cdot 28 \div 10^{4}=\mathbf{3} \cdot \mathbf{2 8} \times \mathbf{1 0}^{-4}
\end{aligned}
$$

Notice for numbers starting 0 - the power of 10 is negative (same as $\div 10$).

SIGNIFICANT FIGURES indicate the accuracy of a measurement.
For example,
$3400 \mathrm{~cm}=34 \mathrm{~m}=0.034 \mathrm{~km}$ same measurement, same accuracy, each 2 significant figures.

Count the number of figures used, but not zeros at the end of a whole number or zeros at the start of a decimal.
rounding: 5713.4
0.057134

5700 to 2 significant figures
0.057 to 2 significant figures (note: 0.057000 wrong)
(1) One milligram of hydrogen gas contans 2.987×10^{20} molecules.

Calculate, to 3 significant figures, the number of molecules in $\mathbf{5}$ grams of hydrogen.

$$
\begin{aligned}
& 5000 \times 2 \cdot 987 \times 10^{20} \\
&= \text { learn to enter standard form in the calculator using the } \\
& \text { appropriate button } \mathrm{EE} \text { or } \mathrm{EXP} \text { or } \times 10^{n} \text { eg. } 2.987 \mathrm{EXP} 20 \\
& \approx 1 \cdot 49 \times 10^{24} \text { molecules }
\end{aligned}
$$

(2) The total mass of argon in a flask is 4.15×10^{-2} grams.

The mass of a single atom of argon is $6 \cdot 63 \times 10^{-23}$ grams.
Find, correct to 3 significant figures, the number of argon atoms in the flask.

$$
\begin{aligned}
& \frac{4 \cdot 15 \times 10^{-2}}{6 \cdot 63 \times 10^{-23}} \quad \text { use the }(-) \text { button for a minus eg.4.15 EXP }(-) 2 \\
& =6 \cdot 259 \ldots \times 10^{20} \quad \text { divide 'top' by 'bottom' and write the unrounded answer } \\
& \approx 6.26 \times 10^{20} \text { atoms write the rounded answer }
\end{aligned}
$$

CHAPTER 5: ALGEBRAIC EXPRESSIONS

REMOVING BRACKETS

SINGLE BRACKETS

(1) $3 x(2 x-y+7)$
(2) $-2(3 t+5)$
(3) $-3 w\left(w^{2}-4\right)$
$=6 x^{2}-3 x y+21 x$
$=-6 t-10$
$=-3 w^{3}+12 w$
$3 x \times 2 x=6 x^{2}$
$3 x \times-y=-3 x y$
$-2 \times 3 t=-6 t$
$-3 w \times w^{2}=-3 w^{3}$
$3 x \times+7=+21 x$
$-2 x+5=-10$
$-3 w \times-4=+12 w$

Fully simplify:
(4) $2 \mathrm{t}(3-t)+5 t^{2}$
(5) $5-3(n-2)$
$=6 t-2 t^{2}+5 t^{2}$
$=5-3 n+6$
$=6 t+3 t^{2}$
$=5+6-3 n$
$=11-3 n$

DOUBLE BRACKETS

(1) $(3 x+2)(2 x-5)$

$$
\begin{aligned}
& =3 x(2 x-5)+2(2 x-5) \\
& =6 x^{2}-15 x+4 x-10 \\
& =6 x^{2}-11 x-10
\end{aligned}
$$

or

(2) $(2 t-3)^{2}$

$$
=(2 t-3)(2 t-3)
$$

$$
=2 t(2 t-3)-3(2 t-3)
$$

$$
=4 t^{2}-6 t-6 t+9
$$

$$
=4 t^{2}-12 t+9
$$

(3) $(w+2)\left(w^{2}-3 w+5\right)$
$=w\left(w^{2}-3 w+5\right)+2\left(w^{2}-3 w+5\right)$
$=w^{3}-3 w^{2}+5 w+2 w^{2}-6 w+10$
$=w^{3}-3 w^{2}+2 w^{2}+5 w-6 w+10$
$=w^{3}-w^{2}-w+10$

FACTORSATION

COMMON FACTORS

$$
a b+a c=a(b+c)
$$

Highest Common Factors are used to write expressions in fully factorised form.
Factorise fully: $\quad 4 a-2 a^{2}$

$$
=2 a(2-a)
$$

$$
2 a \times 2-2 a \times a \text { using } \operatorname{HCF}\left(4 a, 2 a^{2}\right)=2 a
$$

NOTE: the following answers are factorised but not fully factorised:

$$
\begin{aligned}
& 2\left(2 a-a^{2}\right) \\
& a(4-2 a)
\end{aligned}
$$

DIFFERENCE OF TWO SQUARES

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Factorise fully:
(1) $4 x^{2}-9$
(2) $4 x^{2}-36$
$=(2 x)^{2}-3^{2}$
$=4\left(x^{2}-9\right) \quad$ common factor first
$=(2 x+3)(2 x-3)$
$=4(x+3)(x-3)$

NOTE: $(2 x+6)(2 x-6)$ is factorised but not fully factorised.

TRINOMIALS

$$
a x^{2}+b x+c, a=1 \quad \text { ie. } 1 x^{2}
$$

$x^{2}+b x+c=(x+?)(x+?) \quad$ The missing numbers are:
a pair of factors of c that sum to b

Factorise fully:
(1) $x^{2}+5 x+6$
(2) $x^{2}-5 x+6$
(3) $x^{2}-5 x-6$
$1 \times 6=2 \times 3=6$
$-1,-6$ or $-2,-3$
$-1,6$ or $1,-6$ or $-2,3$ or $2,-3$
$2+3=5$
$-2+(-3)=-5$
$1+(-6)=-5$
use +2 and +3
use -2 and -3
use +1 and -6
$=(x+2)(x+3)$
$=(x-2)(x-3)$
$=(x+1)(x-6)$
$a x^{2}+b x+c, a \neq 1 \quad$ ie. $n o t 1 x^{2}$

Try out the possible combinations of the factors which could be in the brackets.

Factorise $3 t^{2}-10 t-8$

$$
\text { try combinations so that }-12 t \text { and } 2 t \text { are obtained }
$$

factor pairs: $3 t \times t$ for $3 t^{2} \quad 1 \times 8$ or 2×4 for 8 , one factor negative

$1 t \quad-24 t$

$-8 t \quad 3 t$

$2 t$

$$
(3 t+2)(t-4)
$$

ALGEBRAIC FRACTIONS

SIMPLIFYING: fully factorise 'top' and 'bottom' and 'cancel' common factors MULTIPLY/DIVIDE:

$$
\frac{a}{b} \times \frac{c}{d}=\frac{a \times c}{b \times d}
$$

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}
$$

ADD/SUBTRACT: a common denominator is required.

$$
\text { (1) } \begin{array}{rlr}
& \frac{x^{2}-9}{x^{2}+2 x-3} & \\
=\frac{(x-3)(x+3)}{(x-1)(x+3)} & \text { fully factorise } & \frac{4}{a b} \div \frac{8 a}{b^{2}} \\
= & & =\frac{4}{a b} \times \frac{b^{2}}{8 a} \\
& \text { cancel common factors } & \\
& =\frac{4 \times b^{2}}{a b \times 8 a} \\
& =\frac{4 \times b \times b}{8 \times a \times a \times b} \\
& =\frac{1 \times b}{2 \times a \times a} \\
& & =\frac{b}{2 a^{2}}
\end{array}
$$

(3) $\frac{x}{2}-\frac{x-3}{3}$
(4) $\frac{1}{x}+\frac{3}{x(x-3)}$
$=\frac{3 x}{6}-\frac{2(x-3)}{6}$
$=\frac{1(x-3)}{x(x-3)}+\frac{3}{x(x-3)}$
$=\frac{3 x-2(x-3)}{6}$

$$
=\frac{x-3+3}{x(x-3)}
$$

$=\frac{3 x-2 x+6}{6}$ notice sign change
$=\frac{x}{x(x-3)} \quad$ can simplify
$=\frac{x+6}{6}$

$$
=\frac{1}{x-3}
$$

CHAPTER 6: STRAIGHT LINE

GRADIENT The slope of a line is given by the ratio: $\quad m=\frac{\text { vertical change }}{\text { horizontal change }}$
Using coordinates, the gradient formula is $\quad m_{A B}=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}$

$$
\begin{aligned}
& R(0,8), S(4,2) \\
& m_{R S}=\frac{y_{S}-y_{R}}{x_{S}-x_{R}}=\frac{2-8}{4-0}=\frac{-6}{4}=-\frac{3}{2}
\end{aligned}
$$

$$
P(3,-1) \quad, \quad Q(6,1)
$$

$$
m_{P Q}=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}=\frac{1-(-1)}{6-3}=\frac{2}{3}
$$

note: same result for $\quad \frac{-1-1}{3-6}=\frac{-2}{-3}=\frac{2}{3}$

EQUATION OF A STRAIGHT LINE

gradient m, y-intercept C units ie. meets the y-axis at $(0, C)$

$$
\begin{aligned}
y & =m x+C \\
y-b & =m(x-a)
\end{aligned}
$$

gradient m, through the point (a, b)
equation of line RS:
equation of line PQ :

$$
\begin{array}{rllc}
m_{R S}=-\frac{3}{2} & y=m x+C & m_{P Q}=\frac{2}{3} & y-b=m(x-a) \\
R(0,8) C=8 & y=-\frac{3}{2} x+8 & \begin{array}{c}
\text { a b } \\
\text { or use point } P
\end{array} & y-1=\frac{2}{3}(x-6) \\
& & & 3 y-3=2(x-6) \\
& & & 3 y-3=2 x-12 \\
& & & 3 y=2 x-9
\end{array}
$$

Rearrange the equation to $y=m x+C$ for the gradient and y-intercept.

$$
\begin{aligned}
3 x+2 y-16 & =0 & & \\
2 y & =-3 x+16 & & \text { isolate } y-\text { term } \\
y & =-\frac{3}{2} x+8 & & \text { obtain } 1 y= \\
y & =m x+C & & \text { compare to the general equation } \\
m & =-\frac{3}{2}, C=8 & & \text { meets the } Y-\text { axis at }(0,8)
\end{aligned}
$$

RATE OF CHANGE The gradient is the rate of change.
distance/time graphs: the gradient is the speed.
speed/time graphs: the gradient is the acceleration.
The steeper the graph, the greater the rate of change.
A positive gradient is an increase, a negative gradient is a decrease.
Gradient zero (horizontal line), no change.

RENTAL TAXIS requires a $£ 4$ payment plus a charge of 50 p per mile.
CITY TAXIS charges $£ 1.50$ per mile.
Advise on the better buy.

$\mathrm{m}=1.5$
$\mathrm{C}=0$
no initial charge ,
equation $y=1.5 x$
rate of change $£ 0.50$ per mile, initial charge $£ 4$,

$$
\mathrm{m}=0.5
$$

$\mathrm{C}=4$
equation $y=0.5 x+4$
same cost for 4 miles, but under 4 miles CITY cheaper over 4 miles RENTAL cheaper

SCATTER DIAGRAM: LINE OF BEST FIT

using two well-separated points on the line $(16,6 \cdot 0) \quad(12,5 \cdot 4)$

$$
m=\frac{6 \cdot 0-5 \cdot 4}{16-12}=\frac{0 \cdot 6}{4}=0 \cdot 15
$$

substituting for one point on the line $(16,6 \cdot 0)$

$$
\begin{aligned}
y-b & =m(x-a) \\
y-6 \cdot 0 & =0 \cdot 15(x-16) \\
y-6 \cdot 0 & =0 \cdot 15 x-2 \cdot 4 \\
y & =0 \cdot 15 x+3 \cdot 6 \\
W & =0 \cdot 15 T+3 \cdot 6
\end{aligned}
$$

$$
\begin{aligned}
T=30 \quad W= & 0 \cdot 15 \times 30+3 \cdot 6 \\
& =4 \cdot 5+3 \cdot 6 \\
& =8 \cdot 1 \\
& 8 \cdot 1 \mathrm{grams}
\end{aligned}
$$

CHAPTER 7: ARCS and SECTORS

$$
\frac{\angle A O B}{360^{\circ}}=\frac{\operatorname{arc} A B}{\pi d}=\frac{\text { area of sector } A O B}{\pi r^{2}}
$$

Choose the appropriate pair of ratios based on:
(i) the ratio which includes the quantity to be found
(ii) the ratio for which both quantities are known
(or can be found).
(1) Find the exact length of major arc $A B$.

$$
\begin{aligned}
& \frac{\angle A O B}{360^{\circ}}=\frac{\operatorname{arc} A B}{\pi d} \\
& \frac{240^{\circ}}{360^{\circ}}=\frac{\operatorname{arc} A B}{\pi \times 12} \\
& \operatorname{arc} A B=\frac{240^{\circ}}{360^{\circ}} \times \pi \times 12
\end{aligned}
$$

diameter $d=2 \times 6 \mathrm{~cm}=12 \mathrm{~cm}$
reflex $\angle A O B=360^{\circ}-120^{\circ}=240^{\circ}$
(2) Find the exact area of sector AOB .

$$
\begin{aligned}
\frac{\operatorname{arc} A B}{\pi d} & =\frac{\text { area of sector } A O B}{\pi r^{2}} \\
\frac{24}{\pi \times 12} & =\frac{\text { area of sector } A O B}{\pi \times 6 \times 6}
\end{aligned}
$$

area of sector $A O B=\frac{24}{\pi \times 12} \times \pi \times 6 \times 6$

$$
=72 \mathrm{~cm}^{2}
$$

CHAPTER 8: VOLUMES OF SOLIDS

PRISMS a solid with the same cross-section throughout its length. length l is at right-angles to the area A .

PYRAMIDS

SPHERE

$$
V=\frac{4}{3} \pi r^{3}
$$

EFFECT OF CHANGE

Describe the effect on the volume of a cylinder of:
(i) trebling the radius
(ii) doubling the radius and halving the height

$$
\begin{aligned}
V & =\pi(3 r)^{2} h \\
& =\pi 9 r^{2} h \\
& =9 \pi r^{2} h \\
& 9 \text { times bigger }
\end{aligned}
$$

$$
\begin{aligned}
V & =\pi(2 r)^{2}\left(\frac{1}{2} h\right) \\
& =\pi 4 r^{2} \times \frac{1}{2} h \\
& =2 \pi r^{2} h \\
& 2 \text { times bigger }
\end{aligned}
$$

USING THE FORMULAE

(1) Calculate the volume.

(2) Calculate the volume correct to $\mathbf{3}$ significant figures.

$$
\begin{aligned}
& \text { radius }=20 \mathrm{~cm} \div 2=10 \mathrm{~cm} \\
& \begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times \pi \times 10 \times 10 \times 25 \\
& =2617 \cdot 993 \ldots \mathrm{~cm}^{3} \\
V & =\pi r^{2} h \\
& =\pi \times 10 \times 10 \times 30 \\
& =9424 \cdot 777 \ldots \mathrm{~cm}^{3} \\
V & =\frac{4}{3} \pi r^{3} \div 2 \\
& =\frac{4}{3} \times \pi \times 10 \times 10 \times 10 \div 2 \\
& =2094 \cdot 395 \ldots \mathrm{~cm}^{3}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\text { total volume } & =2617 \cdot 993 \ldots+9424 \cdot 777 \ldots+2094 \cdot 395 \ldots \\
& =14137 \cdot 166 \ldots \\
& \approx 14100 \mathrm{~cm}^{3}
\end{aligned}
$$

CHAPTER 9: EQUATIONS and INEQUALITIES

Simplify by following the rules:
addition and subtraction
$x+a=b$
$x-a=b$
$x=b-a \quad x=b+a$

multiplication and division

$$
\begin{array}{rlr}
a x=b & \frac{x}{a}=b \\
x=\frac{b}{a} & x=a b
\end{array}
$$

(1) Solve: $5 x-4=2 x-19$

$$
\begin{aligned}
3 x-4 & =-19 & & \text { subtracted } 2 x \text { from each side } \\
3 x & =-15 & & \text { added } 4 \text { to each side } \\
x & =-5 & & \text { divided each side by } 3
\end{aligned}
$$

WITH BRACKETS remove first and simplify
(2) Solve: $(4 x+3)(x-2)=(2 x-3)^{2}$

$$
\begin{aligned}
4 x^{2}-5 x-6 & =4 x^{2}-12 x+9 & & \text { removed brackets, fully simplifying } \\
-5 x-6 & = & -12 x+9 & \\
7 x-6 & = & & \text { subtracted } 4 x^{2} \text { from each side } \\
7 x & = & & \text { added } 12 x \text { to each side } \\
x & =\frac{15}{7} & &
\end{aligned}
$$

WITH FRACTIONS remove first, multiplying by the LCM of the denominators
(3) Solve $\frac{1}{2}(x+3)+\frac{1}{3} x=1$

$$
\begin{aligned}
\frac{3}{6}(x+3)+\frac{2}{6} x & =\frac{6}{6} \quad \text { write with common denominators } \\
3(x+3)+2 x & =6 \quad \text { both sides } \times 6 \text { to remove fractions } \\
3 x+9+2 x & =6 \\
5 x & =-3 \\
x & =-\frac{3}{5}
\end{aligned}
$$

INEQUALITIES

Follow the rules for equations, except:
multiply or divide by a negative number, reverse the direction of the inequality sign
$-a x>b$
$x<\frac{b}{-a}$
(1) $8+3 x>2$
$+3 x>-6$
$x>\frac{-6}{+3} \quad \begin{aligned} & \text { divided each side by }+3 \\ & \text { notice sign unchanged }\end{aligned}$
$x>-2$
$\frac{x}{-a}>b$

$$
x<-a b
$$

(2) $8-3 x>2$
$-3 x>-6 \quad$ subtracted 8 from each side
$x<\frac{-6}{-3} \quad \begin{aligned} & \text { divided each side by }-3 \\ & \text { notice sign reversed }\end{aligned}$ $x<2$ simplified

RESTRICTIONS ON SOLUTIONS

(1) $x \leq \frac{5}{2}$ where x is a whole number
(2) $-2 \leq x<2 \quad$ where x is an integer
$x=0,1,2$

$$
x=-2,-1,0,1
$$

TRANSPOSING FORMULAE (CHANGE OF SUBJECT)

Follow the rules for equations to isolate the target letter.

addition and subtraction

$x+a=b$
$x-a=b$
$x=b+a$
multiplication and division

$$
\begin{array}{rlr}
a x=b & \frac{x}{a}=b \\
x=\frac{b}{a} & x=a b
\end{array}
$$

powers and roots

$$
\begin{aligned}
x^{2} & =a & \sqrt{x} & =a \\
x & =\sqrt{a} & x & =a^{2}
\end{aligned}
$$

$$
F=3 r^{2}+p \quad \text { Change the subject of the formula to } \mathrm{r}
$$

$$
\begin{gathered}
r \xrightarrow{\text { square }} r^{2} \stackrel{\times 3}{\longleftrightarrow} \quad 3 r^{2} \xrightarrow{+p} \quad F \\
\sqrt{\frac{F-p}{3}} \stackrel{\sqrt{2}}{\rightleftarrows} \frac{F-p}{3} \stackrel{\div 3}{\longleftrightarrow} \\
\text { inverse operations in reverse order }
\end{gathered}
$$

$$
F=3 r^{2}+p
$$

$$
F-p=3 r^{2} \quad \text { subtract } p \text { from each side }
$$

$$
\frac{F-p}{3}=r^{2} \quad \text { divide each side by } 3
$$

$$
\sqrt{\frac{F-p}{3}}=r \quad \text { square root both sides }
$$

$$
r=\sqrt{\frac{F-p}{3}} \quad \text { subject of formula now } r
$$

CHAPTER 10: SIMULTANEOUS EQUATIONS

The equation of a line is a rule connecting the x and y coordinates of any point on the line.
For example,
x y

$$
y+2 x=8
$$

$$
\begin{equation*}
12+2 \times(-2)=8 \tag{-2,12}
\end{equation*}
$$

To sketch a line, find the points where the line meets the axes.

SOLVE SIMULTANEOUS EQUATIONS: GRAPHICAL METHOD

Sketch the two lines and the point of intersection is the solution.
Solve graphically the system of equations: $y+2 x=8$

$$
y-x=2
$$

$$
\begin{array}{rll}
y+2 x=8 & & (1) \\
y+2 \times 0=8 & & \text { substituted for } x=0 \tag{2}\\
y=8 & & \text { plot }(0,8) \\
y+2 x=8 & & \text { (1) } \\
0+2 x=8 & & \text { substituted for } y=0 \\
x=4 & & \text { plot }(4,0)
\end{array}
$$

$$
\begin{aligned}
y-x & =2 & & \text { (2) } \\
y-0 & =2 & & \text { substituted for } x=0 \\
y & =2 & & \operatorname{plot}(0,2)
\end{aligned}
$$

$$
\begin{array}{rlrl}
y-x & =2 & \\
0-x & =2 & \text { substituted for } y=0 \\
x & =-2 & & \text { plot }(-2,0)
\end{array}
$$

$$
\text { point of intersection }(2,4)
$$

$$
\text { SOLUTION: } \quad x=2 \text { and } y=4
$$

CHECK: $\quad x=2$ and $y=4$
substituted in both equations

$$
\begin{align*}
& y+2 x=8 \tag{2}\\
& 4+2 \times 2=8 \\
& 8=8 \\
& y-x=2 \tag{1}\\
& 4-2=2 \\
& 2=2
\end{align*}
$$

Rearrange one equation to $y=$ and substitute for y in the other equations (or $x=$)

Solve algebraically the system of equations: $y+2 x=8$
$3 y-x=10$
$y+2 x=8$
$y=8-2 x$
(1) can choose to rearrange to $y=$ or $x=$
choosing $y=$ avoids fractions as $x=4-\frac{1}{2} y$
$3 y-x=10$
$3(8-2 x)-x=10$
$24-6 x-x=10$
$-7 x=-14$
$x=2$
$y=8-2 x$
$=8-2 \times 2$
$y=4$
SOLUTION: $\quad x=2$ and $y=4$

CHECK:

$$
\begin{aligned}
3 y-x & =10 \\
3 \times 4-2 & =10 \\
10 & =10
\end{aligned} \quad \begin{aligned}
\text { using the other equation } \\
\text { substituted for } x=2 \text { and } y=4
\end{aligned}
$$

Can add or subtract multiples of the equations to eliminate either the x or y term.

Solve algebraically the system of equations: $4 x+3 y=5$

$$
5 x-2 y=12
$$

$$
\begin{array}{lll}
4 x+3 y=5 & \text { (1) } \times 2 & \text { can choose to eliminate x or y term } \\
5 x-2 y=12 & (2) \times 3 & \text { choosing } y \text { term, } L C M(3 y, 2 y)=6 y
\end{array}
$$

$$
8 x+6 y=10
$$

(3) multiplied each term of (1) by 2 for $+6 y$
$15 x-6 y=36$ multiplied each term of (2) by 3 for $-6 y$

$$
23 x=46 \quad(3)+(4)
$$

added equations , adding "like" terms $+6 y$ and $-6 y$ added to 0 (ie eliminate)

$$
\begin{align*}
4 x+3 y & =5 \tag{1}\\
4 \times 2+3 y & =5 \\
8+3 y & =5 \\
3 y & =-3 \\
y & =-1
\end{align*}
$$

can choose either equation (1) or (2) substituted for $x=2$

SOLUTION: $\quad x=2$ and $y=-1$

CHECK:

$$
\begin{align*}
5 x-2 y & =12 \tag{2}\\
5 \times 2-2 \times(-1) & =12 \\
10-(-2) & =12 \\
12 & =12
\end{align*}
$$

using the other equation
substituted for $x=2$ and $y=-1$

CHAPTER 11: QUADRATIC EQUATIONS

A function pairs one number with another, its IMAGE. It can be defined by a formula.
QUADRATIC FUNCTIONS
$f(x)=a x^{2}+b x+c, a \neq 0$, where a, b and c are constants.

$$
f(x)=x^{2}-2 x-3
$$

$f(-2)=(-2)^{2}-2 \times(-2)-3=4+4-3=5$, the image of -2 is 5 .

\boldsymbol{x}	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\boldsymbol{f}(\boldsymbol{x})$	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{- 3}$	$\mathbf{- 4}$	$\mathbf{- 3}$	$\mathbf{0}$	$\mathbf{5}$
points	$(-2,5)$	$(-1,0)$	$(0,-3)$	$(1,-4)$	$(2,-3)$	$(3,0)$	$(4,5)$

If all possible values of x are considered, a graph will show the images (the RANGE). The graph is a symmetrical curve called a PARABOLA.

The graph meets the x-axis where $x^{2}-2 x-3=0$.
The zeros of the graph are -1 and 3 which are the roots of the equation.

QUADRATIC EQUATIONS

An equation of the form $a x^{2}+b x+c=0, a \neq 0$, where a, b and c are constants.
The values of x that satisfy the equation are the roots of the equation.
The quadratic formula can be used to solve the equation.

QUADRATIC FORMULA

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, a \neq 0
$$

Find the roots of the equation $3 x^{2}-5 x-1=0$, correct to two decimal places.

$$
\begin{aligned}
& 3 x^{2}-5 x-1=0 \\
& a x^{2}+b x+c=0
\end{aligned}
$$

$$
a=3, b=-5, c=-1
$$

$$
b^{2}-4 a c=(-5)^{2}-4 \times 3 \times(-1)=37
$$

$$
-b=-(-5)=+5
$$

$$
2 a=2 \times 3=6
$$

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x & =\frac{5 \pm \sqrt{37}}{6} \\
& =\frac{5-\sqrt{37}}{6} \text { or } \frac{5+\sqrt{37}}{6} \\
& =\frac{-1 \cdot 0827 \ldots}{6} \text { or } \frac{11 \cdot 0827 \ldots}{6}
\end{aligned}
$$

$$
x=-0 \cdot 1804 \ldots \text { or } \quad 1 \cdot 8471 \ldots .
$$

$$
\text { roots are }-0.18 \text { and } 1.85
$$

DISCRIMINANT

$b^{2}-4 a c$ gives the nature of the roots
(i) $b^{2}-4 a c<0$ NO REAL ROOTS ie. negative
(ii) $b^{2}-4 a c=0$ ONE REAL ROOT (repeated) (two EQUAL roots)
(iii) $b^{2}-4 a c>0$ TWO REAL ROOTS ie. positive (and DISTINCT)

Find k so that $2 x^{2}-4 x-k=0$ has real roots.
$2 x^{2}-4 x-k=0$
for real roots , $\quad b^{2}-4 a c \geq 0$
$a x^{2}+b x+c=0$ $16+8 k \geq 0$
$a=2, b=-4, c=-k$
$8 k \geq-16$
$b^{2}-4 a c=(-4)^{2}-4 \times 2 \times(-k)$ $k \geq-2$

$$
=16+8 k
$$

FACTORISATION

RATIONAL ROOTS (non-surds)
$b^{2}-4 a c=$ a square number ie. $0,1,4,9,16 \ldots .$. the quadratic can be factorised to solve the equation.

IRRATIONAL ROOTS (surds) $b^{2}-4 a c \neq$ a square number solve the equation by formula.

Solve:
(1) $4 n-2 n^{2}=0$
(2) $2 t^{2}+t-6=0$
$2 n(2-n)=0$
$2 n=0 \quad$ or $\quad 2-n=0$
$\underline{\underline{n=0} \quad \text { or } \quad n=2}$

$$
\begin{aligned}
(2 t-3) & (t+2) & =0 & \\
2 t-3 & =0 & \text { or } & t+2=0 \\
2 \mathrm{t} & =3 & & \\
t & =\frac{3}{2} & \text { or } & t=-2
\end{aligned}
$$

The equation may need to be rearranged:
(3)

$$
\begin{gather*}
(w+1)^{2}=2(w+5) \tag{4}\\
w^{2}+2 w+1=2 w+10 \\
w^{2}-9=0 \\
(w+3)(w-3)=0 \\
w+3=0 \quad \text { or } \quad w-3=0 \\
w=-3 \quad \text { or } \quad w=3 \\
\hline \hline
\end{gather*}
$$

$$
x+2=\frac{15}{x}, x \neq 0
$$

$$
x(x+2)=15
$$

$$
x^{2}+2 x=15
$$

$$
x^{2}+2 x-15=0
$$

$$
(x+5)(x-3)=0
$$

$$
x+5=0 \quad \text { or } \quad x-3=0
$$

$$
x=-5 \quad \text { or } \quad x=3
$$

GRAPHS

A sketch of the graph of a quadratic function should show where the parabola meets the axes and the maximum or minimum turning point.

Sketch the graph $y=x^{2}-2 x-3$.
(i) meets the Y-axis where $x=0$
$y=0^{2}-2 \times 0-3=-3$ point (0,-3)
(ii) meets the X-axis where $y=0$

$$
\begin{array}{r}
x^{2}-2 x-3=0 \\
(x+1)(x-3)=0 \\
x=-1 \quad \text { or } \quad x=3 \\
\text { points }(-1,0) \text { and }(\mathbf{3}, 0)
\end{array}
$$

(iii) axis of symmetry
vertical line half-way between the zeros
$x=\frac{-1+3}{2}=\frac{2}{2}=1$, equation $x=1$.

: $(1,-4)$
(iv) turning point
lies on the axis of symmetry $x=1$
$y=1^{2}-2 \times 1-3=-4$ point $(1,-4)$
Note: (1) from the graph, ($1,-4$) is a minimum turning point.
(2) the minimum value of the function is -4 .

APPLICATIONS

Problems involving maxima or minima which can be modelled by a quadratic equation.

A sheet of metal 40 cm . wide is folded $x \mathrm{~cm}$ from each end to form a gutter.
To maximise water flow the rectangular cross-section should be as large as possible.

Find the maximum cross-sectional area possible.

$$
\begin{aligned}
A & =l b \\
& =x(40-2 x) \quad \text { sketch the graph } A=40 x-2 x^{2} \\
& =40 x-2 x^{2}
\end{aligned}
$$

Zeros:

$40 x-2 x^{2}=0$
$2 x(20-x)=0$
$\begin{aligned} 2 x & =0 & \text { or } & & 20-x & =0 \\ x & =0 & \text { or } & & x & =20\end{aligned}$

Turning Point:

$(0+20) \div 2=10$
axis of symmetry $x=10$
$y=40 x-2 x^{2}$
$y=40 \times 10-2 \times 10^{2}=200$
maximum turning point $(10,200)$

Maximum area 200 square centimetres.

EQUATION OF A GRAPH

$y=k(x-a)(x-b)$
a and b are the zeros of the graph k is a constant.

Write the equation of the graph.

$$
y=k(x-a)(x-b)
$$

zeros -1 and 3

$$
y=k(x+1)(x-3)
$$

$$
\left.\begin{array}{rl}
x y \\
\text { for }(0,-6), & -6
\end{array}\right)=k(0+1)(0-3) ~ \begin{aligned}
-6 & =k \times 1 \times(-3) \\
-6 & =-3 k \\
k & =2 \\
y & =2(x+1)(x-3)
\end{aligned}
$$

Write the equation of the graph.

$$
\begin{equation*}
y=k x^{2} \tag{-3,18}
\end{equation*}
$$

$\left.\begin{array}{c}x \\ \text { for } \\ (-3,18)\end{array}\right), 18=k \times(-3)^{2}$

$$
\begin{aligned}
18 & =9 k \\
k & =2 \\
y & =2 x^{2}
\end{aligned}
$$

COMPLETED SQUARE:

Quadratic functions written in the form $y= \pm 1(x-a)^{2}+b, a$ and b are constants. axis of symmetry $\quad x=a$
turning point $\quad(a, b)$, minimum for +1 , maximum for -1
$y=x^{2}-8 x+21$ can be written as $y=(x-4)^{2}+5$
meets the y-axis where $x=0$
$y=(0-4)^{2}+5=16+5=21$
point $(0,21)$

COMPLETING THE SQUARE:

$$
\begin{array}{rll}
& x^{2}-8 x+21 \\
& x^{2}-8 x \quad+21 & \text { coefficient of } x,-8, \text { is halved and squared },(-4)^{2} \text { to } 16 \\
= & x^{2}-8 x+16-16+21 & \text { add and subtract } 16 \\
= & (x-4)^{2}-16+21 \quad \text { complete square around trinomial } \\
= & (x-4)^{2}+5
\end{array}
$$

CHAPTER 12: PYTHAGORAS’ THEOREM

Side length a units is opposite the right angle. It is the longest side, the hypotenuse.

For right-angled triangles:

$$
\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}
$$

3D Identify right-angled triangles in 3D diagrams.

$$
\text { face diagonal } \quad \begin{aligned}
A C^{2} & =24^{2}+18^{2} \\
& =576+324 \\
& =900 \\
A C & =\sqrt{ } 900 \\
& =30
\end{aligned}
$$

$$
\text { slant height } \quad \begin{aligned}
V M^{2} & =4^{2}-2^{2} \\
& =16-4 \\
& =12
\end{aligned}
$$

$V M=\sqrt{ } 12$
$=2 \sqrt{ } 3$
space diagonal $A D^{2}=40^{2}+30^{2}$

$$
\begin{aligned}
& =1600+900 \\
& =2500 \\
A D & =\sqrt{ } 2500 \\
& =50
\end{aligned}
$$

$$
\text { height } \quad \begin{aligned}
V C^{2} & =(\sqrt{ } 12)^{2}-2^{2} \\
& =12-4 \\
& =8 \\
V C & =\sqrt{ } 8 \\
& =2 \sqrt{ } 2
\end{aligned}
$$

CONVERSE OF PYTHAGORAS' THEOREM

Show that $\triangle \mathrm{ABC}$ is right angled.

$$
\begin{aligned}
& A B^{2}+B C^{2}=8^{2}+6^{2}=100 \\
& A C^{2}=10^{2}=100 \\
& \text { since } A B^{2}+B C^{2}=A C^{2} \\
& \text { by the Converse of Pyth. Thm } . \\
& \triangle A B C \text { is right-angled at } B \quad\left(\text { ie. } \angle A B C=90^{\circ}\right)
\end{aligned}
$$

CHAPTER 13: ANGLES and SHAPE

LINES

SUPPLEMENTARY angles
$\mathrm{a}+\mathrm{b}=180$

COMPLEMENTARY angles
$c+d=90$

TRIANGLES

angle sum $a^{\circ}+b^{\circ}+c^{\circ}=180^{\circ}$

EXTERIOR ANGLE is the sum of the opposite INTERIOR ANGLES

ISOSCELES

EQUILATERAL

POLYGONS

INTERIOR ANGLES sum to $(\mathrm{n}-2) \times 180^{\circ}$ where n sides
EXTERIOR ANGLES sum to 360°

pentagon
interior sum $3 \times 180^{\circ}=540^{\circ}$

exterior sum 360°
all sides and angles equal

REGULAR pentagon interior angle $540^{\circ} \div 5=108^{\circ}$

QUADRILATERALS

KITE

TRAPEZIUM

PARALLELOGRAM a trapezium

RHOMBUS a kite and parallelogram

RECTANGLE a parallelogram
SQUARE a rectangle and rhombus.

CHAPTER 14: PROPERTIES OF THE CIRCLE

angle in a semicircle the perpendicular bisector is a right-angle.
of a chord is a diameter.
a tangent and the radius drawn to the point of contact form a right-angle.

ANGLES

(1)

radius $O A=O B$ so $\triangle A O B$ is isosceles and \triangle angle sum 180° :
$\angle O B A=\left(180^{\circ}-120^{\circ}\right) \div 2=30^{\circ}$
tangent $C D$ and radius $O B: \angle O B C=90^{\circ}$

Calculate the size of angle $\mathrm{ABC} . \quad \angle A B C=90^{\circ}-30^{\circ}=60^{\circ}$
(2)

diameter $A B$ bisects chord $C D: \angle A M D=90^{\circ}$
$\triangle A M D$ angle sum 180° :
$\angle A D M=180^{\circ}-90^{\circ}-30^{\circ}=60^{\circ}$
angle in a semicircle : $\angle A D B=90^{\circ}$
Calculate the size of angle BDC. $\angle B D C=90^{\circ}-60^{\circ}=30^{\circ}$

PYTHAGORAS' THEOREM

A circular road tunnel, radius 10 metres, is cut through a hill.

The road has a width 16 metres.
Find the height of the tunnel.

the diameter drawn is the perpendicular bisector of the chord:
Δ is right-angled so can apply Pyth. Thm.

$$
\begin{aligned}
x^{2} & =10^{2}-8^{2} \\
& =100-64 \\
& =36 \\
x & =\sqrt{36} \\
x & =6
\end{aligned}
$$

$$
\begin{aligned}
h & =x+10 \\
& =6+10 \\
h & =16
\end{aligned} \quad \begin{aligned}
& \text { height } 16 \text { metres }
\end{aligned}
$$

CHAPTER 15: SIMILAR SHAPES

Shapes are similar if they are enlargement or reductions of each other.
(1) the angles remain unchanged - the shapes are equiangular.
and (2) the sides are enlarged or reduced by some scale factor (SF).

Triangles are special:

Enlarge or reduce sides by some scale factor and the two triangles will be equiangular. If triangles are equiangular then they are similar.

SCALING LENGTH

length scale factor, $\mathrm{SF}=\frac{\text { image side }}{\text { original side }} \quad \begin{aligned} & \text { enlargement if } \quad \mathrm{SF}>1 \\ & \text { reduction if } 0<\mathrm{SF}<1\end{aligned}$

Find the value of x.

$S F=\frac{\text { image }}{\text { original }}=\frac{6}{15}=\frac{2}{5} \quad 0<S F<1$ as expected for a reduction
$x=\frac{2}{5} \times 16=6 \cdot 4 \quad$ smaller than 16 as expected for a reduction

SCALING AREA for a 2D shape both length and breadth must be scaled.
length $\mathrm{SF}=\boldsymbol{n}$ area $\mathrm{SF}=\boldsymbol{n}^{2}$

Given that the two shapes shown are similar, find the area of the larger shape.

$$
\begin{array}{rlrl}
\text { length } \mathrm{SF} & =\frac{\text { image }}{\text { original }}=\frac{15}{12}=\frac{5}{4} & & \text { SF }>1 \text { as expected for an enlargement } \\
\text { area } \mathrm{SF} & =\frac{5}{4} \times \frac{5}{4}=\frac{25}{16} & \\
A & =\frac{25}{16} \times 48=75 & \text { bigger than } 48 \text { as expected for an enlargement }
\end{array}
$$

SCALING VOLUME for a 3D shape length, breadth and height must be scaled.

length $\mathbf{S F}=\boldsymbol{n}$

volume $\mathrm{SF}=\boldsymbol{n}^{3}$

Given that the two solids shown are similar find the volume of the smaller solid.

$$
\text { length } \mathrm{SF}=\frac{\text { image }}{\text { original }}=\frac{12}{15}=\frac{4}{5} \quad 0<S F<1 \text { as expected for a reduction }
$$

$$
\text { volume } \mathrm{SF}=\frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}=\frac{64}{125}
$$

$$
V=\frac{64}{125} \times 250=128 \quad \text { smaller than } 250 \text { as expected for a reduction }
$$

CHAPTER 16: TRIGONOMETRY: RIGHT-ANGLED TRIANGLES

SOH-CAH-TOA

Opposite: opposite the angle a°. Adjacent: next to the angle a°. Hypotenuse: opposite the right angle.

The ratios of sides $\frac{\mathrm{O}}{\mathrm{H}}, \frac{\mathrm{A}}{\mathrm{H}}$ and $\frac{\mathrm{O}}{\mathrm{A}}$ have values which depend on the size of angle a°.
These are called the sine, cosine and tangents of a°, written $\sin \mathrm{a}^{\circ}, \cos \mathrm{a}^{\circ}$ and $\tan \mathrm{a}^{\circ}$.
For example,

The trig. function acts on an angle to produce the value of the ratio.
The inverse trig. function acts on the value of a ratio to produce the angle.
For example,

$$
\begin{aligned}
& \sin 30^{\circ}=0.5 \\
& \sin ^{-1} 0.5=30^{\circ}
\end{aligned}
$$

ACCURACY

Rounding the angle or the value in a calculation can result in significant errors.
For example,
$100 \times \tan 69.5^{\circ}=267.462 \ldots \approx 267$
$100 \times \tan 70^{\circ}=274.747 \ldots \approx 275$

$$
\begin{aligned}
& \tan ^{-1} 2.747=69.996 \ldots \approx 70.0 \\
& \tan ^{-1} 2.7=69.676 \ldots \approx 69.7
\end{aligned}
$$

FINDING AN UNKNOWN SIDE

(1) Find x.

$$
\begin{aligned}
\sin 40^{\circ} & =\frac{x}{10} \\
x & =10 \times \sin 40^{\circ} \quad \begin{array}{l}
\text { ensure calculator } \\
\text { set to DEGREES }
\end{array} \\
& =6 \cdot 427 \ldots .
\end{aligned}
$$

know H, find O
J」 J J

SOH-CAH-TOA

(2) Find y.

know A, find H
SOH-CAH-TOA

FINDING AN UNKNOWN ANGLE

(3) Find x.

$\tan x^{\circ}=\frac{9}{7}$

$$
\begin{aligned}
x & =\tan ^{-1}\left(\frac{9}{7}\right) \begin{array}{c}
\text { use brackets } \\
\text { for }(9 \div 7), \\
\text { calculator set } \\
\text { to DEGREES }
\end{array} \\
& =52 \cdot 125 \ldots \\
x & =52 \cdot 1
\end{aligned}
$$

CHAPTER 17: TRIGONOMETRY: GRAPHS \& EQUATIONS

The cosine graph is the sine graph shifted 90° to the left.

The graphs have a PERIOD of 360° (repeat every 360°).

Turning points:
maximum $(90,1)$, minimum $(270,-1)$

maximum $(0,1)$, minimum ($180,-1$)

The tangent graph has a PERIOD of 180°.

TRANSFORMATIONS Same rules for $y=\sin x^{\circ}$ and $y=\cos x^{\circ}$.

Y-STRETCH $y=\mathbf{n} \sin x^{\circ} \quad y$-coordinates multiplied by \mathbf{n}. amplitude \mathbf{n} units maximum value $+\mathbf{n}$, minimum value $-\mathbf{n}$
(1)

X-STRETCH $\mathrm{y}=\sin \mathbf{n} x^{\circ}$
x-coordinates divided by \mathbf{n}. period $360^{\circ} \div \mathbf{n}$. There are \mathbf{n} cycles in 360°.
(2)

Y-SHIFT $\quad y=\sin x^{\circ}+\mathbf{n} \quad$ add \mathbf{n} units to y-coordinates graph shifted \mathbf{n} units vertically.
(3)

X-SHIFT
$y=\sin (x+\mathbf{n})^{\circ}$
subtract \mathbf{n} units from the x-coordinates graph shifted $-\mathbf{n}^{\circ}$ horizontally.
(4)

NOTE: for $y=\sin (x+20)^{\circ}$ the graph $y=\sin x^{\circ}$ would be shifted 20° to the left.

COMBINING TRANSFORMATIONS

Turning points: maximum $(30,15)$, minimum $(90,1)$
$y=\sin x^{\circ}$
$y=7 \sin 3 x^{\circ}+8$

(2)

$y=\cos x^{\circ}$
$y=5 \cos (x-10)^{\circ}$

EQUATIONS

The graphs with equations $y=5+3 \cos x^{\circ}$ and $y=4$ are shown.
Find the x coordinates of the points of intersection A and B.

$$
\begin{aligned}
5+3 \cos x^{\circ} & =4 \\
3 \cos x^{\circ} & =-1 \\
\cos x^{\circ} & =-\frac{1}{3}
\end{aligned}
$$

$x=109 \cdot 5$ or $250 \cdot 5$

* $\mathbf{A}, \mathbf{S}, \mathbf{T}, \mathbf{C}$ is where functions are positive:

cosine negative	A
$180-\mathrm{a}=109 \cdot 5$	$\mathrm{a}=\cos ^{-1} 1 / 3=70 \cdot 528 \ldots$
cosine	
positive	

* A all functions are positive
$S \quad$ sine function only is positive
T tangent function only is positive
C cosine function only is positive

IDENTITIES

$$
\begin{aligned}
& \sin ^{2} x^{\circ}+\cos ^{2} x^{\circ}=1 \\
& \tan x^{\circ}=\frac{\sin x^{\circ}}{\cos x^{\circ}}
\end{aligned}
$$

$$
\text { Simplify } \frac{1-\cos ^{2} x^{\circ}}{\sin x^{\circ} \cos x^{\circ}}
$$

$$
=\frac{\sin ^{2} x^{\circ}}{\sin x^{\circ} \cos x^{\circ}}
$$

$$
=\frac{\sin x^{\circ} \sin x^{\circ}}{\sin x^{\circ} \cos x^{\circ}} \quad \text { "cancel" } \sin x^{\circ}
$$

$$
=\frac{\sin x^{\circ}}{\cos x^{\circ}}
$$

$$
=\tan x^{\circ}
$$

EXACT VALUES

For example,

$$
\sin 60^{\circ}=\frac{\sqrt{3}}{2} \quad, \quad \tan 30^{\circ}=\frac{1}{\sqrt{3}}
$$

$$
\cos 45^{\circ}=\frac{1}{\sqrt{2}} \quad, \quad \tan 45^{\circ}=\frac{1}{1}=1
$$

ANGLES $>\mathbf{9 0}^{\circ}$

$$
\begin{aligned}
& \sin 240^{\circ} \\
= & \sin \left(180^{\circ}+60^{\circ}\right) \\
= & -\sin 60^{\circ} \\
= & -\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
180+\mathrm{a}=240 \text { S: }
$$

sine negative

CHAPTER 18: TRIGONOMETRY: TRIANGLE FORMULAE

 SINE RULE

NOTE: requires at least one side and its opposite angle to be known.

FINDING AN UNKNOWN SIDE

Find the length of side BC

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{b}{\sin B} \\
\frac{a}{\sin 43^{\circ}} & =\frac{6}{\sin 55^{\circ}} \\
a & =\frac{6}{\sin 55^{\circ}} \times \sin 43^{\circ} \\
& =4.995 \ldots .
\end{aligned}
$$

$$
B C \approx 5 \cdot 0 \mathrm{~m}
$$

FINDING AN UNKNOWN ANGLE

Find the size of angle BAC.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin A}{5} & =\frac{\sin 55^{\circ}}{6} \\
\sin A & =\frac{\sin 55^{\circ}}{6} \times 5 \\
& =0.682 \ldots
\end{aligned}
$$

$$
A=\sin ^{-1} 0 \cdot 682 \ldots .
$$

$$
=43 \cdot 049 \ldots .
$$

$$
\angle B A C \approx 43.0^{\circ}
$$

COSINE RULE

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{aligned}
$$

FINDING AN UNKNOWN SIDE

NOTE: requires knowing 2 sides and the angle between them.

Find the length of side BC.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
& =6^{2}+9^{2}-2 \times 6 \times 9 \times \cos 32^{\circ} \\
a^{2} & =25 \cdot 410 \ldots . . \\
a & =\sqrt{25 \cdot 410 \ldots . .} \\
& =5 \cdot 040 \ldots . \\
B C & \approx 5 \cdot 0 \mathrm{~m}
\end{aligned}
$$

FINDING AN UNKNOWN ANGLE

NOTE: requires knowing all 3 sides.

Find the size of angle BAC.

$$
\begin{aligned}
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{6^{2}+9^{2}-5^{2}}{2 \times 6 \times 9} \\
\cos A & =0 \cdot 85185 \ldots . . \\
A & =\cos ^{-1}(0 \cdot 85185 \ldots . .) \\
& =31.586 \ldots . \\
\angle B A C & \approx 31 \cdot 6^{\circ}
\end{aligned}
$$

AREA FORMULA

Area $\triangle A B C=\frac{1}{2} a b \sin C$

NOTE: requires knowing 2 sides and the angle between them.
(1)

$$
\text { Area } \begin{aligned}
\triangle A B C & =\frac{1}{2} a b \sin C \\
& =\frac{1}{2} \times 5 \times 6 \times \sin 53^{\circ} \\
& =11.979 \ldots . . \\
\text { Area } & \approx 12.0 \mathrm{~m}^{2}
\end{aligned}
$$

Find the area of the triangle.
(2)

$$
\text { Area } \begin{aligned}
\triangle A B C & =\frac{1}{2} a b \sin C \\
12 & =\frac{1}{2} \times 5 \times 6 \times \sin C \quad \text { double both sides } \\
24 & =\quad 30 \times \sin C \\
\sin C & =24 \div 30=0 \cdot 8
\end{aligned}
$$

Find angle ACB.

$$
C=\sin ^{-1}(0.8)
$$

$$
=53.130 \ldots .^{\circ} \text { or } 126.869 \ldots .^{\circ}
$$

$$
\text { (from } 180^{\circ}-53.130 \ldots{ }^{\circ}
$$

as angle could be obtuse)
$\angle A C B \approx 53 \cdot 1^{\circ} \quad$ from diagram, angle acute

CHAPTER 19: VECTORS

SCALAR quantities have size(magnitude).
VECTOR quantities have size and direction.
eg. time, speed, volume eg. force, velocity

A directed line segment represents a vector.
Vectors can be written in component form as column vectors

$$
\begin{array}{lll}
\overrightarrow{A B}=\binom{4}{0} & \overrightarrow{C D}=\binom{5}{3} & \overrightarrow{E F}=\binom{-3}{-6} \\
\overrightarrow{G H}=\binom{-4}{6} & \overrightarrow{I J}=\binom{0}{-2} &
\end{array}
$$

negative vector, opposite direction

$$
\overrightarrow{H G}=\binom{4}{-6}
$$

SIZE follows from Pyth. Thm
$\mathbf{u}=\binom{a}{b}$
$|\mathbf{u}|=\sqrt{a^{2}+b^{2}}$

$$
|\overrightarrow{G H}|=\sqrt{(-4)^{2}+6^{2}}=\sqrt{52}=2 \sqrt{13} \text { units }
$$

$\overrightarrow{A D}=\overrightarrow{B C}=\binom{3}{4}$
same size and direction same vector \mathbf{u} same component form

ADD/SUBTRACT

by column vectors
add or subtract components.

$$
\binom{-3}{4}+\binom{7}{2}=\binom{4}{6}
$$

by diagram
"head-to-tail" addition

$$
\overrightarrow{P Q}+\overrightarrow{Q R}=\overrightarrow{P R}
$$

MULTIPLY by a number
$\mathbf{u}=\binom{a}{b} \quad \mathrm{k} \mathbf{u}=\binom{\mathrm{k} a}{\mathrm{k} b}$
$\overrightarrow{A B}=\binom{2}{1} \quad \overrightarrow{C D}=\binom{8}{4}$
if $\quad \mathbf{v}=\mathrm{ku}$
$\overrightarrow{C D}=4 \overrightarrow{A B}$
then \mathbf{u} and \mathbf{v} are parallel
$C D$ is parallel to $A B$

3D

Vectors in 3D operate in the same way as vectors in 2D.

Points are plotted on 3 mutually perpendicular axes.
$\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ has position vector $\mathbf{p}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$

If $\mathbf{u}=\left(\begin{array}{r}1 \\ -2 \\ 3\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ find the value of $|\mathbf{v}-2 \mathbf{u}|$.

$$
\begin{aligned}
& \mathbf{v}-2 \mathbf{u}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)-2\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)-\left(\begin{array}{c}
2 \\
-4 \\
6
\end{array}\right)=\left(\begin{array}{c}
-3 \\
4 \\
-5
\end{array}\right) \\
& |\mathbf{v}-2 \mathbf{u}|=\sqrt{(-3)^{2}+4^{2}+(-5)^{2}}=\sqrt{50}=5 \sqrt{2}
\end{aligned}
$$

CHAPTER 20: STATISTICS

Studying statistical information, it is useful to consider: (1) typical result: average
(2) distribution of results: spread

AVERAGES:

$$
\begin{aligned}
\text { mean } & =\frac{\text { total of all results }}{\text { number of results }} \\
\text { median } & =\text { middle result of the ordered results } \\
\text { mode } & =\text { most frequent result }
\end{aligned}
$$

SPREAD:

Ordered results are split into 4 equal groups so each contains 25% of the results.
The 5 figure summary identifies: $L, Q_{1}, Q_{2}, Q_{3}, H$ (lowest result , 1st , 2nd and 3rd quartiles, highest result)

A Box Plot is a statistical diagram that displays the 5 figure summary:

$$
\text { range, } R=H-L
$$

interquartile range, $I Q R=Q_{3}-Q_{1}$
semi-interquartile range, $S I Q R=\frac{Q_{3}-Q_{1}}{2}$

NOTE: If Q_{1}, Q_{2} or Q_{3} fall between two results, the mean of the two results is taken.
For example,
12 ordered results: split into 4 equal groups of 3 results

$$
\begin{gathered}
\\
\begin{array}{lllllllll}
10 & 11 & 13 & Q_{1} & & Q_{2} & Q_{3} \\
17 & 18 & 20 & 20 & 23 & 25 & 26 & 27 & 29
\end{array} \\
Q_{1}=\frac{13+17}{2}=15 \quad, \\
\end{gathered}
$$

The pulse rates of school students were recorded in Biology class.
Pulse rates: $66,64,71,56,60,79,77,75,69,73,75,62,66,71,66$ beats per minute.

15 ordered results:

	Q_{1}												
56	60	62	$\mathbf{6 4}$	66	66	66	$\mathbf{6 9}$	71	71	73	$\mathbf{7 5}$	75	77

5 Figure Summary:

$$
L=56 \quad, \quad Q_{1}=64 \quad, \quad Q_{2}=69 \quad, \quad Q_{3}=75 \quad, \quad H=79
$$

Box Plot:

Spread:

$$
\begin{gathered}
R=H-L=79-56=23 \\
I Q R=Q_{3}-Q_{1}=75-64=11 \\
S I Q R=\frac{Q_{3}-Q_{1}}{2}=\frac{75-64}{2}=\frac{11}{2}=5 \cdot 5
\end{gathered}
$$

Averages: $\quad($ total $=66+64+71+\ldots+66=1030)$

$$
M E A N=\frac{1030}{15}=68 \cdot 666 \ldots=68 \cdot 7
$$

$$
\begin{aligned}
\left(Q_{2}\right) M E D I A N & =69 \\
M O D E & =66
\end{aligned}
$$

STANDARD DEVIATION

A measure of the spread of a set of data, giving a numerical value to how the data deviates from the mean. It therefore gives an indication of how good the mean is as a representitive of the data set.

Formulae:

mean $\bar{x}=\frac{\sum x}{n}$

Examples,
(1) High Standard Deviation: results spread out

mean $=38$, standard deviation $=7.5$
(2) Low Standard Deviation: results clustered around the mean the results are more consistent

mean $=38$, standard deviation $=3 \cdot 8$

The pulse rates of 8 army recruits: $61,64,65,67,70,72,75,78$ beats per minute.

$\bar{x}=\frac{\sum x}{n}$	x	$x-\bar{x}$	$(x-\bar{x})^{2}$
552	61	-8	64
$=\frac{}{8}$	64	-5	25
$=69$	65	-4	16
	67	-2	4
	70	+1	1
	72	+3	9
	75	+6	36
	78	+9	81
TOTALS	552		236

$$
\begin{aligned}
s & =\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}} \\
& =\sqrt{\frac{236}{7}} \\
& =5 \cdot 806 \ldots \\
& \approx 5 \cdot 8
\end{aligned}
$$

or

\bar{x}	$=\frac{\sum x}{n}$	
	$=\frac{552}{8}$	x
	$=69$	x^{2}
	61	3721
	64	4096
	65	4225
	67	4489
	70	4900
TOTALS	72	5184
	75	5625
	78	6084
		38324

$s=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}$
$=\sqrt{\frac{38324-\frac{552^{2}}{8}}{7}}$
$=\sqrt{\frac{236}{7}}$
$=5 \cdot 806 \ldots$.
$\approx 5 \cdot 8$

PROBABILITY

The probability of an event A occuring is

$$
\mathrm{P}(\mathrm{~A})=\frac{\text { number of outcomes involving } \mathrm{A}}{\text { total number of outcomes possible }}
$$

$0 \leq \mathrm{P} \leq 1 \quad \mathrm{P}=0$ impossible,$\quad \mathrm{P}=1$ certain

$$
\mathrm{P}(\operatorname{not} \mathrm{~A})=1-\mathrm{P}(\mathrm{~A})
$$

number of expected outcomes involving event $\mathrm{A}=$ number of trials $\times \mathrm{P}(\mathrm{A})$

The experimental results will differ from the theoretical probability.
(1) In an experiment a letter is chosen at random from the word ARITHMETIC and the results recorded.

letter	frequency	relative frequency
vowel	111	$111 \div 300=0.37$
consonant	189	$189 \div 300=0.63$
	total $=300$	total $=1$

Estimate of probability,
$P($ vowel $)=0 \cdot 37$
(2) A letter is chosen at random from the word ARITHMETIC.

4 vowels out of 10 letters,

$$
P(\text { vowel })=\frac{4}{10}=\frac{2}{5} \quad \text { ie. } 0 \cdot 4
$$

for 300 trials, \quad number of vowels expected $=$ number of trials $\times P($ vowel $)$

$$
=300 \times 0.4
$$

$$
=120
$$

6 consonants out of 10 letters, $P($ consonant $)=\frac{6}{10}=\frac{3}{5} \quad$ ie. $0 \cdot 6$
$P($ not a vowel $)=1-0 \cdot 4=0.6$
vowel or consonant,
$P($ either $)=\frac{10}{10}=1 \quad$ certain
vowel and consonant,
$P($ both $)=\frac{0}{10}=0 \quad$ impossible

