

INDEX:

- Chapter 1: Fractions page 1 page 3 Chapter 2: Percentages page 5 Chapter 3: Surds Indices, including Scientific Notation and Significant Figures page 7 Chapter 4: page 9 Chapter 5: Algebraic Expressions page 13 Chapter 6: Straight Line, including scatter diagram Arcs and Sectors page 16 Chapter 7: page 17 Chapter 8: Volumes of Solids page 19 Equations and Inequalities, including Transposing Formulae Chapter 9: Chapter 10: Simultaneous Equations page 22 page 25 Chapter 11: Quadratic Equations page 32 Chapter 12: Pythagoras' Theorem page 34 Chapter 13: Angles and Shape page 36 Chapter 14: Properties of the Circle page 38 Chapter 15: Similar Shapes
 - page 40 Chapter 16: Trigonometry: Right-Angled Triangles
 - page 42 Chapter 17: Trigonometry: Graphs and Equations
 - page 48 Chapter 18: Trigonometry: Triangle Formulae
 - page 51 Chapter 19: Vectors
 - page 53 Chapter 20: Statistics

©2013 D R Turnbull

This material may be used for non-profit educational purposes only and must include this copyright notice.

FORMULAE LIST

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, $a \neq 0$

Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc\cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

Area of a triangle: Area = $\frac{1}{2}ab\sin C$

- Volume of a sphere: Volume = $\frac{4}{3}\pi r^3$
- Volume of a cone: Volume = $\frac{1}{3}\pi r^2 h$

Volume of a pyramid: Volume = $\frac{1}{3}Ah$

Volume of a cylinder: Volume = $\pi r^2 h$

Standard deviation:
$$s = \sqrt{\frac{\sum(x-\overline{x})^2}{n-1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2/n}{n-1}}$$
, where *n* is the sample size.

CHAPTER 1: FRACTIONS

Simplify (cancel down):

 $\frac{28}{36} = \frac{28 \div 4}{36 \div 4} = \frac{7}{9}$ divide by highest common factor, HCF(28,36) = 4

Mixed numbers and improper fractions (top heavy):

$$\frac{4 \times 2 + 3 = 11}{2\frac{3}{4} = 2 + \frac{3}{4} = \frac{8}{4} + \frac{3}{4} = \frac{11}{4}}$$
 'bottom' stays as 4
$$\underbrace{11 \div 4 = 2 R3}$$

Addition and Subtraction requires a common denominator:

$$\frac{5}{6} - \frac{4}{9}$$

$$= \frac{15}{18} - \frac{8}{18}$$

$$least common multiple LCM(6,9)=18$$

$$\frac{5 \times 3}{6 \times 3} = \frac{15}{18}$$

$$\frac{4 \times 2}{9 \times 2} = \frac{8}{18}$$
both fractions now 18ths
$$= \frac{7}{18}$$
subtract 'top' numbers, still 18ths

Multiplication and Division requires no mixed numbers:

ORDER OF CALCULATION:

to change the order use brackets

× and ÷ before + or – BRACKETS FIRST!

Carry out separate calculations:

(1) $7\frac{5}{6} - \frac{8}{9} of 2\frac{3}{4}$

multiply first

subtraction last

$\frac{8}{9} \times \frac{11}{4}$	of means multiply	$7\frac{5}{6} - 2\frac{4}{9}$	
$=\frac{88}{36}$	fully simplify	$=7\frac{15}{18} - 2\frac{8}{18}$	common denominator
$=\frac{22}{9}$		$=5\frac{7}{18}$	subtract whole numbers and fractions separately
$=2\frac{4}{9}$			

(2) $\left(\frac{5}{6} - \frac{1}{2}\right) \div 1\frac{3}{4}$

$\frac{5}{6} - \frac{1}{2}$	brackets first	$\frac{1}{3} \div 1\frac{3}{4}$	
$=\frac{5}{6}-\frac{3}{6}$		$=\frac{1}{3} \div \frac{7}{4}$	'top-heavy' first
$=\frac{2}{6}$	fully simplify	$=\frac{1}{3} \times \frac{4}{7}$	multiply by reciprocal
$=\frac{1}{3}$		$=\frac{4}{21}$	

CHAPTER 2: PERCENTAGES

PERCENTAGE CHANGE

valuevalueINCREASE: growth, appreciation, compound interest $100\% \xrightarrow{+a\%} (100 + a)\%$ DECREASE: decay, depreciation $100\% \xrightarrow{-a\%} (100 - a)\%$ For example, $100\% \xrightarrow{+8\%} 108\% = 1.08$ multiply quantity by 1.08 for 8% increase8% decrease: $100\% \xrightarrow{-8\%} 92\% = 0.92$ multiply quantity by 0.92 for 8% decrease

original

changed

REVERSING PERCENTAGE CHANGE

Divide by the factor which produced the increase.

(1) Including VAT of 20%, a radio costs £96. Find the original cost exclusive of VAT.

20% VAT added	$\pounds x \times 1 \cdot 20 = \pounds 96$
+20%	$\pounds x = \pounds 96 \div 1 \cdot 20$
$100\% \xrightarrow{+20\%} 120\% = 1.20$	= £80

non-calculator: $120\% \xrightarrow{\div 12} 10\% \xrightarrow{\times 10} 100\%$ $\pounds 96 \div 12 = \pounds 8$ $\pounds 8 \times 10 = \pounds 80$

(2) A camera costs £120 after a discount of 25% is applied. Find the original cost.

 $25\% \text{ discount subtracted} \\ 100\% \xrightarrow{-25\%} 075\% = 0.75 \\ fx = \pounds 120 \\ \pounds x = \pounds 120 \\ \div 0.75 \\ = \pounds 160 \\ fx =$

non-calculator:
$$75\% = \frac{3}{4}$$
 $\xrightarrow{3}{4} \xrightarrow{\div 3}{4} \xrightarrow{1}{4} \xrightarrow{\times 4}{4} \xrightarrow{4}{4}$
 $\pounds 120 \div 3 = \pounds 40$ $\pounds 40 \times 4 = \pounds 160$

COMPOUND PERCENTAGE CHANGE

appreciation and depreciation

(1) A £240000 house appreciates in value by 5% in 2007, appreciates 10% in 2008 and depreciates by 15% in 2009. Calculate the value of the house at the end of 2009.

	or	evaluate year by year year 1
5% increase: $100\% + 5\% = 105\% = 1.05$		$5\% \ of \pounds 240000 = \pounds 12000$
10% increase: $100% + 10% = 110% = 1.10$		$\pounds 240000 + \pounds 12000 = \pounds 25200$
15% decrease: $100\% - 15\% = 085\% = 0.85$		year 2
		$10\% \ of \pounds 252000 = \pounds 25200$
		$\pounds 252000 + \pounds 25200 = \pounds 277200$
		year 3
$\pm 240000 \times 1.05 \times 1.10 \times 0.85$		$15\% \ of \pounds 277200 = \pounds 41580$
= £235620		$\pounds 277200 - \pounds 41580 = \pounds 235620$

compound interest

(2) Calculate the compound interest on $\pounds 12000$ invested at 5% pa for 3 years.

 $\pounds 12000 \times (1.05)^3$ ie. $\times 1.05 \times 1.05 \times 1.05$ or evaluate year by year $\pounds 12000 \times 1.157625$ = $\pounds 13891.50$ compound interest = $\pounds 13891.50 - \pounds 12000 = \pounds 1891.50$

EXPRESSING CHANGE AS A PERCENTAGE

$$\% change = \frac{change}{start} \times 100\%$$

A £15000 car is resold for £12000. Find the percentage loss.

$$loss = \pounds 15000 - \pounds 12000 = \pounds 3000$$

$$\% \ loss = \frac{3000}{15000} \times 100\% = 20\%$$

CHAPTER 3: SURDS

NUMBER SETS:

Natural numbers	N =	{1, 2, 3}
Whole numbers	$W = \{$	0, 1, 2, 3}
Integers $Z = \{\dots -3, \dots -3\}$	-2, -1,	0, 1, 2, 3}

Rational numbers, Q, can be written as a division of two integers. Irrational numbers **cannot** be written as a division of two integers.

Real numbers, R, are all rational and irrational numbers.

SURDS ARE IRRATIONAL ROOTS.

For example, $\sqrt{2}$, $\sqrt{\frac{5}{9}}$, $\sqrt[3]{16}$ are surds.

whereas $\sqrt{25}$, $\sqrt{\frac{4}{9}}$, $\sqrt[3]{-8}$ are **not** surds as they are 5, $\frac{2}{3}$ and -2 respectively.

SIMPLIFYING ROOTS:

RULES:
$$\sqrt{mn} = \sqrt{m} \times \sqrt{n}$$
 $\sqrt{\frac{m}{n}} = \frac{\sqrt{m}}{\sqrt{n}}$

(1) Simplify $\sqrt{24} \times \sqrt{3}$

(2) Simplify $\sqrt{72} + \sqrt{48} - \sqrt{50}$

$$\sqrt{24} \times \sqrt{3}$$

$$= \sqrt{72}$$

$$= \sqrt{72}$$

$$= \sqrt{36} \times \sqrt{2}$$

$$= \sqrt{36} \times \sqrt{2}$$

$$= 6 \times \sqrt{2}$$

$$= 6 \sqrt{2}$$

$$\sqrt{72} + \sqrt{48} - \sqrt{50}$$

$$= \sqrt{36} \times \sqrt{2} + \sqrt{16} \times \sqrt{3} - \sqrt{25} \times \sqrt{2}$$

$$= 6\sqrt{2} + 4\sqrt{3} - 5\sqrt{2}$$

$$= 6\sqrt{2} - 5\sqrt{2} + 4\sqrt{3}$$

$$= \sqrt{2} + 4\sqrt{3}$$

(3) Remove the brackets and fully simplify:

(a)
$$(\sqrt{3} - \sqrt{2})^2$$

 $= (\sqrt{3} - \sqrt{2})(\sqrt{3} - \sqrt{2})$
 $= \sqrt{3}(\sqrt{3} - \sqrt{2}) - \sqrt{2}(\sqrt{3} - \sqrt{2})$
 $= \sqrt{3}(\sqrt{3} - \sqrt{2}) - \sqrt{2}(\sqrt{3} - \sqrt{2})$
 $= \sqrt{9} - \sqrt{6} - \sqrt{6} + \sqrt{4}$
 $= 3 - \sqrt{6} - \sqrt{6} + 2$
 $= 5 - 2\sqrt{6}$
(b) $(3\sqrt{2} + 2)(3\sqrt{2} - 2)$
 $= (3\sqrt{2} + 2)(3\sqrt{2} - 2)$
 $= 3\sqrt{2}(3\sqrt{2} - 2) + 2(3\sqrt{2} - 2)$
 $= 9\sqrt{4} - 6\sqrt{2} + 6\sqrt{2} - 4$
 $= 14$

RATIONALISING DENOMINATORS:

Removing surds from the denominator.

Express with a rational denominator:

(1)
$$\frac{4}{\sqrt{6}}$$
 (2) $\frac{\sqrt{3}}{3\sqrt{2}}$

CHAPTER 4: INDICES

base
$$\rightarrow a^n \leftarrow \text{index or exponent}$$

INDICES RULES: require the same base.

Examples:

$$a^{m} \times a^{n} = a^{m+n} \qquad \qquad \frac{w^{2} \times w^{5}}{w^{3}} = \frac{w^{7}}{w^{3}} = w^{4}$$

$$(a^{m})^{n} = a^{mn}$$

 $(a^{m})^{n} = a^{m}b^{n}$
 $(a^{m})^{n} = a^{n}b^{n}$
 $(2a^{3}b)^{2} = 2^{2}a^{6}b^{2} = 4a^{6}b^{2}$

$$a^{0} = 1$$
 $5^{0} = 1$
 $a^{1} = a$ $5^{1} = 5$

$$a^{\frac{m}{n}} = \sqrt[n]{a^{m}} = \left(\sqrt[n]{a}\right)^{m} \qquad 8^{\frac{4}{3}} = \left(\sqrt[3]{8}\right)^{4} = 2^{4} = 16$$
$$\frac{1}{a^{p}} = a^{-p} \qquad 8^{-\frac{4}{3}} = \frac{1}{\frac{1}{8^{\frac{4}{3}}}} = \frac{1}{16}$$

SCIENTIFIC NOTATION (STANDARD FORM)

Writing numbers in the form $a \times 10^n$

where $1 \le a < 10$	place the decimal point after the first non-zero digit
and <i>n</i> is an integer	numbers3, -2, -1, 0, 1, 2, 3

 $32800 = 3 \cdot 28 \times 10 \times 10 \times 10 \times 10 = 3 \cdot 28 \times 10^4$

 $0 \cdot 000328 = 3 \cdot 28 \div 10 \div 10 \div 10 = 3 \cdot 28 \div 10^4 = 3 \cdot 28 \times 10^{-4}$

Notice for numbers starting $0 \cdot$ the power of 10 is negative (same as $\div 10$).

SIGNIFICANT FIGURES indicate the accuracy of a measurement.

For example,	3400 cm = 34 m = 0.034 km
-	same measurement, same accuracy, each 2 significant figures.

Count the number of figures used, but **not** zeros at the **end** of a whole number or zeros at the **start** of a decimal.

rounding:	5713.4	5700 to 2 significant figures	
	0.057134	0.057 to 2 significant figures	(note: 0.057000 wrong)

(1) One **milligram** of hydrogen gas contans $2 \cdot 987 \times 10^{20}$ molecules. Calculate, to 3 significant figures, the number of molecules in **5 grams** of hydrogen.

 $5000 \times 2.987 \times 10^{20}$ learn to enter standard form in the calculator using the = 1.4935×10^{24} appropriate button EE or EXP or $\times 10^{n}$ eg. 2.987 EXP 20 $\approx 1.49 \times 10^{24}$ molecules

(2) The total mass of argon in a flask is $4 \cdot 15 \times 10^{-2}$ grams. The mass of a single atom of argon is $6 \cdot 63 \times 10^{-23}$ grams.

Find, correct to 3 significant figures, the number of argon atoms in the flask.

$4 \cdot 15 \times 10^{-2}$	use the (-) button for a minus	eg. 4-15 EXP (-) 2
6.63×10^{-23}		
$= 6 \cdot 259 \times 10^{20}$	divide 'top' by 'bottom' and wi	rite the unrounded answer
$\approx 6 \cdot 26 \times 10^{20}$ atoms	write the rounded answer	

CHAPTER 5: ALGEBRAIC EXPRESSIONS REMOVING BRACKETS

SINGLE BRACKETS

(1) $3x(2x-y+7)$	(2) $-2(3t+5)$	(3) $-3w(w^2-4)$
$= 6x^2 - 3xy + 21x$	=-6t-10	$= -3w^3 + 12w$
$3x \times 2x = 6x^{2}$ $3x \times -y = -3xy$ $3x \times +7 = +21x$	$\begin{array}{rrrr} -2 & \times & 3t & = -6t \\ -2 & \times & +5 & = -10 \end{array}$	$-3w \times w^{2} = -3w^{3}$ $-3w \times -4 = +12w$

Fully simplify:

(4)
$$2t(3-t)+5t^2$$

 $= 6t-2t^2+5t^2$
 $= 6t+3t^2$
(5) $5-3(n-2)$
 $= 5-3n+6$
 $= 5+6-3n$
 $= 11-3n$

DOUBLE BRACKETS

(1)
$$(3x+2)(2x-5)$$

= $3x(2x-5) + 2(2x-5)$
= $6x^2 - 15x + 4x - 10$
= $6x^2 - 11x - 10$
(3x+2)(2x-5)
(3x+2)(2x-5)

$$(2) (2t-3)^{2} (3) (w+2)(w^{2}-3w+5) = (2t-3)(2t-3) = 2t (2t-3) - 3 (2t-3) = 4t^{2}-6t - 6t+9 = 4t^{2}-12t+9$$

$$(3) (w+2)(w^{2}-3w+5) = w (w^{2}-3w+5) + 2 (w^{2}-3w+5) = w^{3}-3w^{2}+5w + 2w^{2}-6w+10 = w^{3}-3w^{2}+2w^{2}+5w-6w+10 = w^{3}-w^{2}-w+10$$

FACTORSATION

COMMON FACTORS ab + ac = a(b + c)**Highest Common Factors** are used to write expressions in **fully** factorised form.

Factorise **fully**: $4a - 2a^2$ = 2a(2-a) $2a \times 2 - 2a \times a$ using $HCF(4a, 2a^2) = 2a$

NOTE: the following answers are factorised but not fully factorised:

$$2(2a-a^2)$$
$$a(4-2a)$$

DIFFERENCE OF TWO SQUARES

$$a^2 - b^2 = (a+b)(a-b)$$

Factorise **fully**:

(1) $4x^2 - 9$ $= (2x)^2 - 3^2$ = (2x + 3)(2x - 3)(2) $4x^2 - 36$ $= 4(x^2 - 9)$ common factor first = 4(x + 3)(x - 3)

NOTE: (2x+6)(2x-6) is factorised but not **fully** factorised.

TRINOMIALS

$$ax^2 + bx + c$$
, $a = 1$ i.e $1x^2$

 $x^{2} + bx + c = (x + ?)(x + ?)$ The missing numbers are: **a pair of factors of c** that **sum to b**

Factorise fully:

(1) $x^{2} + 5x + 6$ $1 \times 6 = 2 \times 3 = 6$ 2 + 3 = 5 $x = 2 \times 3 = 6$ $(2) x^{2} - 5x + 6$ $(3) x^{2} - 5x - 6$ $(4) x^{2} - 5x - 6$ $(4) x^{2} - 5x - 6$ $(3) x^{2} - 5x - 6$ $(4) x^{2} - 5x - 6$ $(4) x^{2} - 5$

 $ax^2 + bx + c$, $a \neq 1$ i.e. not $1x^2$

Try out the possible combinations of the factors which could be in the brackets.

Factorise $3t^2 - 10t - 8$

 $3 \times (-8) = -24 \text{ pairs of factors } \underbrace{1,24 \text{ or } 2,12 \text{ or } 3,8 \text{ or } 4,6}_{-12+2=-10} \text{ one factor is negative}$ $\underbrace{-12+2=-10}_{-12t+2t=-10t}$

try combinations so that -12t and 2t are obtained

factor pairs: $3t \times t$ for $3t^2$ 1×8 or 2×4 for 8, one factor negative

ALGEBRAIC FRACTIONS

SIMPLIFYING: fully factorise 'top' and 'bottom' and 'cancel' common factors

MULTIPLY/DIVIDE:

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d} \qquad \qquad \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$

ADD/SUBTRACT: a common denominator is required.

(1)
$$\frac{x^2 - 9}{x^2 + 2x - 3}$$

= $\frac{(x - 3)(x + 3)}{(x - 1)(x + 3)}$ fully factorise
= $\frac{x - 3}{x - 1}$ cancel common factors
= $\frac{4 \times b^2}{ab \times 8a}$
= $\frac{4 \times b \times b}{8 \times a \times a \times b}$
= $\frac{1 \times b}{2x a \times a}$
= $\frac{b}{2a^2}$
(3) $\frac{x}{2} - \frac{x - 3}{3}$ (4) $\frac{1}{x} + \frac{3}{x(x - 3)}$
= $\frac{3x}{6} - \frac{2(x - 3)}{6}$ = $\frac{1(x - 3)}{x(x - 3)} + \frac{3}{x(x - 3)}$
= $\frac{3x - 2(x - 3)}{6}$ = $\frac{x - 3 + 3}{x(x - 3)}$
= $\frac{3x - 2x + 6}{6}$ notice sign change = $\frac{x}{x(x - 3)}$ can simplify
= $\frac{x + 6}{6}$ = $\frac{1}{x - 3}$
page 12

CHAPTER 6: STRAIGHT LINE

GRADIENT The slope of a line is given by the ratio:

 $m = \frac{vertical \ change}{horizontal \ change}$

Using coordinates, the gradient formula is

$$m_{AB} = \frac{y_B - y_A}{x_B - x_A}$$

$$R(0,8)$$
, $S(4,2)$
 $M_{RS} = \frac{y_S - y_R}{x_S - x_R} = \frac{2 - 8}{4 - 0} = \frac{-6}{4} = -\frac{3}{2}$

$$P(3,-1) , Q(6,1)$$

$$m_{PQ} = \frac{y_Q - y_P}{x_Q - x_P} = \frac{1 - (-1)}{6 - 3} = \frac{2}{3}$$

note: same result for
$$\frac{-1-1}{3-6} = \frac{-2}{-3} = \frac{2}{3}$$

EQUATION OF A STRAIGHT LINE

gradient *m*, y-intercept *C* units i.e. meets the y-axis at (0,*C*) y = mx + Cgradient *m*, through the point (a,*b*) y - b = m(x - a)

equation of line RS:

equation of line PQ:

$$m_{RS} = -\frac{3}{2} \qquad y = mx + C \qquad \qquad m_{PQ} = \frac{2}{3} \qquad y - b = m(x - a)$$

a b
Q(6,1) $\qquad y - 1 = \frac{2}{3}(x - 6)$
or use point P
 $3y - 3 = 2(x - 6)$
 $3y - 3 = 2x - 12$
 $3y = 2x - 9$

Rearrange the equation to y = mx + C for the gradient and y-intercept.

3x + 2y - 16 = 0	
2y = -3x + 16	isolate y-term
$y = -\frac{3}{2}x + 8$	<i>obtain</i> 1 <i>y</i> =
y = mx + C	compare to the general equation
$m=-\frac{3}{2} \ , \ C=8$	meets the Y - axis at (0,8)

RATE OF CHANGE The gradient is the rate of change.

distance/time graphs:	the gradient is the speed.
speed/time graphs:	the gradient is the acceleration.

The steeper the graph, the greater the rate of change. A positive gradient is an increase, a negative gradient is a decrease. Gradient zero (horizontal line), no change.

RENTAL TAXIS requires a £4 payment plus a charge of 50p per mile. CITY TAXIS charges £1.50 per mile. Advise on the better buy.

SCATTER DIAGRAM: LINE OF BEST FIT

using two well-separated points on the line $(16, 6 \cdot 0)$ $(12, 5 \cdot 4)$

$$m = \frac{6 \cdot 0 - 5 \cdot 4}{16 - 12} = \frac{0 \cdot 6}{4} = 0 \cdot 15$$

substituting for one point on the line (16, 6.0) y-b = m(x-a)y-b = m(x-a)

$$y - 6 \cdot 0 = 0 \cdot 15 (x - 16)$$

$$y - 6 \cdot 0 = 0 \cdot 15 x - 2 \cdot 4$$

$$y = 0 \cdot 15 x + 3 \cdot 6$$

$$W = 0 \cdot 15T + 3 \cdot 6$$

$$T = 30 \qquad W = 0 \cdot 15 \times 30 + 3 \cdot 6$$
$$= 4 \cdot 5 + 3 \cdot 6$$
$$= 8 \cdot 1$$
$$8 \cdot 1 \quad grams$$

CHAPTER 7: ARCS and SECTORS

$$\frac{\angle AOB}{360^{\circ}} = \frac{arc \ AB}{\pi d} = \frac{area \ of \ sector \ AOB}{\pi r^2}$$

Choose the appropriate pair of ratios based on:(i) the ratio which includes the quantity to be found(ii) the ratio for which both quantities are known (or can be found).

(1) Find the **exact** length of **major** arc AB.

diameter $d = 2 \times 6 \ cm = 12 \ cm$
$reflex \ \angle AOB = 360^{\circ} - 120^{\circ} = 240^{\circ}$

(2) Find the **exact** area of sector AOB.

$$\frac{\angle AOB}{360^{\circ}} = \frac{arc \ AB}{\pi \ d}$$
$$\frac{240^{\circ}}{360^{\circ}} = \frac{arc \ AB}{\pi \times 12}$$

$$arc AB = \frac{240^{\circ}}{360^{\circ}} \times \pi \times 12$$
$$= 8\pi \ cm \qquad (25 \cdot 132...)$$

$$\frac{\operatorname{arc} AB}{\pi d} = \frac{\operatorname{area of sector} AOB}{\pi r^2}$$
$$\frac{24}{\pi \times 12} = \frac{\operatorname{area of sector} AOB}{\pi \times 6 \times 6}$$

area of sector AOB =
$$\frac{24}{\pi \times 12} \times \pi \times 6 \times 6$$

= 72 cm²

CHAPTER 8: VOLUMES OF SOLIDS

PRISMS a solid with the same cross-section throughout its length. length l is at right-angles to the area A.

PYRAMIDS

SPHERE

EFFECT OF CHANGE

Describe the effect on the volume of a cylinder of:

(i) trebling the radius (ii) doubling the radius and halving the height

$$V = \pi (3r)^{2} h$$

$$= \pi 9r^{2} h$$

$$= 9\pi r^{2} h$$

$$= 9\pi r^{2} h$$

$$= 2\pi r^{2} h$$

page 17

USING THE FORMULAE

(1) Calculate the volume.

(2) Calculate the volume correct to **3 significant figures**.

total volume = $2617 \cdot 993... + 9424 \cdot 777... + 2094 \cdot 395...$ = $14137 \cdot 166...$ ≈ 14100 cm^3

CHAPTER 9: EQUATIONS and INEQUALITIES

Simplify by following the rules: addition and subtraction

multiplication and division

x + a = b	x - a = b	ax = b	$\frac{x}{a} = b$
x = b - a	x = b + a	$x = \frac{b}{a}$	x = ab

(1) Solve: $5x - 4 = 2x - 19$	
3x - 4 = -19	subtracted 2x from each side
3x = -15	added 4 to each side
x = -5	divided each side by 3

WITH BRACKETS remove first and simplify

(2) Solve: $(4x+3)(x-2) = (2x-3)^2$ $4x^2 - 5x - 6 = 4x^2 - 12x + 9$ removed brackets, fully simplifying -5x - 6 = -12x + 9 subtracted $4x^2$ from each side 7x - 6 = +9 added 12x to each side 7x = 15 added 6 to each side $x = \frac{15}{7}$ divided each side by 7

WITH FRACTIONS remove first, multiplying by the LCM of the denominators (3) Solve $\frac{1}{2}(x+3) + \frac{1}{3}x = 1$

$\frac{3}{6}(x+3) + \frac{2}{6}x = \frac{6}{6}$	write with common denominators
3(x+3)+2x=6	both sides \times 6 to remove fractions
3x + 9 + 2x = 6	
5x = -3	
$x = -\frac{3}{5}$	

INEQUALITIES

Follow the rules for equations, except:

multiply or divide by a negative number, reverse the direction of the inequality sign

-ax > b	$\frac{x}{-a} > b$		
$x < \frac{b}{-a}$	x < -ab		
(1) $8 + 3x > 2$	(2)	8 - 3x > 2	
+3x > -6		-3x > -6	subtracted 8 from each side
$x > \frac{-6}{+3}$	divided each side by + 3 notice sign unchanged	$x < \frac{-6}{-3}$	divided each side by – 3 notice sign reversed
x > -2		x < 2	simplified

RESTRICTIONS ON SOLUTIONS

(1)
$$x \le \frac{5}{2}$$
 where x is a whole number
 $x = 0,1,2$
(2) $-2 \le x < 2$ where x is an integer
 $x = -2,-1,0,1$

TRANSPOSING FORMULAE (CHANGE OF SUBJECT)

Follow the rules for equations to isolate the target letter.

addition and subtraction

multiplication and division

ax = b $\frac{x}{a} = b$ $x + a = b \qquad \qquad x - a = b$ $x = b - a \qquad x = b + a$ $x = \frac{b}{a}$ x = ab

powers and roots

 $x^2 = a$ $\sqrt{x} = a$ $x = \sqrt{a} \qquad \qquad x = a^2$

 $F = 3r^2 + p$ Change the subject of the formula to r.

$$r \xrightarrow{square} r^2 \xrightarrow{\times 3} 3r^2 \xrightarrow{+p} F$$

$$\sqrt{\frac{F-p}{3}} \xleftarrow{\sqrt{\qquad}} \frac{F-p}{3} \xleftarrow{\div 3} F-p \xleftarrow{-p} F$$
inverse operations in reverse order

inverse operations in reverse order

 $F = 3r^2 + p$ $F - p = 3r^2$ subtract p from each side $\frac{F-p}{3} = r^2$ $\sqrt{\frac{F-p}{3}} = r$ $r = \sqrt{\frac{F-p}{3}}$ subject of formula now r

divide each side by 3

square root both sides

CHAPTER 10: SIMULTANEOUS EQUATIONS

The equation of a line is a rule connecting the x and y coordinates of any point on the line.

For example, $\begin{array}{cc} x & y \\ (-2,12) \end{array} \quad \begin{array}{c} y + 2x = 8 \\ 12 + 2 \times (-2) = 8 \end{array}$

To sketch a line, find the points where the line meets the axes.

SOLVE SIMULTANEOUS EQUATIONS: GRAPHICAL METHOD

Sketch the two lines and the point of intersection is the solution.

Solve **graphically** the system of equations: y + 2x = 8

$$y - x = 2$$

 y + 2x = 8 (1)
 y - x = 2 (2)

 $y + 2 \times 0 = 8$ substituted for x = 0 y - 0 = 2 substituted for x = 0

 y = 8 plot (0,8)
 y = 2 plot (0,2)

$$y + 2x = 8 (1)$$

$$0 + 2x = 8 substituted for y = 0$$

$$x = 4 plot (4,0)$$

SOLVE SIMULTANEOUS EQUATIONS: SUBSTITUTION METHOD

Rearrange one equation to y = and substitute for y in the other equations (or x =)

Solve **algebraically** the system of equations: y + 2x = 83y - x = 10

y + 2x = 8	(1)	can choose to rearrange to $y = or x =$
y = 8 - 2x		choosing $y = avoids$ fractions as $x = 4 - \frac{1}{2}y$

3y - x = 10	(2)
3(8-2x)-x=10	
24 - 6x - x = 10	
-7x = -14	
<i>x</i> = 2	

y = 4

replace y by 8 - 2xsolve

$$y = 8 - 2x \qquad (1) \qquad can choose either equation (1) or (2)$$
$$= 8 - 2 \times 2 \qquad substituted for x = 2$$

SOLUTION:

x = 2 and y = 4

CHECK:

$$3y - x = 10$$
 (2)
 $3 \times 4 - 2 = 10$ s
 $10 = 10$

using the other equation substituted for x = 2 and y = 4

SOLVE SIMULTANEOUS EQUATIONS: ELIMINATION METHOD

Can add or subtract multiples of the equations to eliminate either the *x* or *y* term.

Solve **algebraically** the system of equations: 4x + 3y = 55x - 2y = 12

4x + 3y = 5	(1) $\times 2$	can choose to eliminate x or y term
5x - 2y = 12	$(2) \times 3$	choosing y term, $LCM(3y,2y) = 6y$
8x + 6y = 10	(3)	multiplied each term of (1) by $2 \text{ for } + 6y$
15x - 6y = 36	(4)	multiplied each term of (2) by 3 for – 6y
23x = 46	(3) + (4)	added equations , adding "like" terms
x = 2		+ 6y and $- 6y$ added to 0 (ie eliminate)

4x + 3y = 5	(1)	can choose either equation (1) or (2)
$4 \times 2 + 3y = 5$		substituted for $x = 2$
8 + 3y = 5		
3y = -3		
<i>y</i> = -1		

SOLUTION: x = 2 and y = -1

CHECK:

$$5x - 2y = 12$$
 (2)
 $5 \times 2 - 2 \times (-1) = 12$
 $10 - (-2) = 12$
 $12 = 12$

using the other equation substituted for x = 2 and y = -1

CHAPTER 11: QUADRATIC EQUATIONS

A function pairs one number with another, its IMAGE. It can be defined by a formula.

QUADRATIC FUNCTIONS

 $f(x) = ax^2 + bx + c$, $a \neq 0$, where a, b and c are constants.

 $f(x) = x^{2} - 2x - 3$ $f(-2) = (-2)^{2} - 2 \times (-2) - 3 = 4 + 4 - 3 = 5$, the image of -2 is 5.

x	-2	-1	0	1	2	3	4
f(x)	5	0	-3	-4	-3	0	5
points	(-2,5)	(-1,0)	(0,-3)	(1,-4)	(2,-3)	(3,0)	(4,5)

If all possible values of *x* are considered, a graph will show the images (the RANGE). The graph is a symmetrical curve called a PARABOLA.

The graph meets the x-axis where $x^2 - 2x - 3 = 0$. The **zeros** of the graph are -1 and 3 which are the **roots** of the equation.

QUADRATIC EQUATIONS

An equation of the form $ax^2 + bx + c = 0$, $a \neq 0$, where a, b and c are constants.

The values of x that satisfy the equation are the **roots** of the equation. The quadratic formula can be used to solve the equation.

QUADRATIC FORMULA

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad , a \neq 0$$

Find the **roots** of the equation $3x^2 - 5x - 1 = 0$, correct to two decimal places.

Х

Find k so that $2x^2 - 4x - k = 0$ has **real** roots.

$$\begin{array}{ll} 2x^2 - 4x - k = 0 & for \ real \ roots \ , & b^2 - 4ac \ge 0 \\ ax^2 + bx + c = 0 & 16 + 8k \ge 0 \\ a = 2 \ , \ b = -4 \ , \ c = -k & 8k \ge -16 \\ b^2 - 4ac = (-4)^2 - 4 \times 2 \times (-k) & k \ge -2 \\ & = 16 + 8k \end{array}$$

FACTORISATION

RATIONAL ROOTS (non-surds)	$b^2 - 4ac =$ a square number ie. 0,1,4,9,16 the quadratic can be factorised to solve the equation.
IRRATIONAL ROOTS (surds)	$b^2 - 4ac \neq$ a square number solve the equation by formula.

Solve:

(1)
$$4n - 2n^2 = 0$$

 $2n(2-n) = 0$
 $2n = 0$ or $2-n = 0$
 $n = 0$ or $n = 2$
(2) $2t^2 + t - 6 = 0$
 $(2t-3)(t+2) = 0$
 $2t-3 = 0$ or $t+2 = 0$
 $2t = 3$
 $t = \frac{3}{2}$ or $t = -2$

The equation may need to be rearranged:

(3)
$$(w+1)^2 = 2(w+5)$$

 $w^2 + 2w + 1 = 2w + 10$
 $w^2 - 9 = 0$
 $(w+3)(w-3) = 0$
 $w + 3 = 0$ or $w-3 = 0$
 $w = -3$ or $w = 3$
(4) $x + 2 = \frac{15}{x}, x \neq 0$
 $x(x+2) = 15$
 $x^2 + 2x = 15$
 $(x+5)(x-3) = 0$
 $x + 5 = 0$ or $x - 3 = 0$
 $x = -5$ or $x = 3$

=

GRAPHS

A sketch of the graph of a quadratic function should show where the parabola meets the axes and the maximum or minimum turning point.

(iv) turning point

lies on the axis of symmetry x = 1 $y = 1^2 - 2 \times 1 - 3 = -4$ point (1,-4)

Note: (1) from the graph, (1,-4) is a **minimum turning point**.

(2) the **minimum value** of the function is -4.

APPLICATIONS

Problems involving maxima or minima which can be modelled by a quadratic equation.

A sheet of metal 40 cm. wide is folded x cm from each end to form a gutter. To maximise water flow the rectangular cross-section should be as large as possible.

Find the maximum cross-sectional area possible.

Maximum area 200 square centimetres.

EQUATION OF A GRAPH

$$y = k(x-a)(x-b)$$

a and b are the zeros of the graph k is a constant.

Write the equation of the graph.

$$y = k(x-a)(x-b)$$
zeros -1 and 3

$$y = k(x+1)(x-3)$$
for (0,-6) , -6 = k(0+1)(0-3)
-6 = k × 1 × (-3)
-6 = -3k
k = 2
y = 2(x+1)(x-3)

Write the equation of the graph.

$$y = kx^{2}$$

for (-3,18) , 18 = $k \times (-3)^{2}$
18 = 9 k
 $k = 2$
 $y = 2x^{2}$

COMPLETED SQUARE:

Quadratic functions written in the form $y = \pm 1(x-a)^2 + b$, a and b are constants.

axis of symmetry x = aturning point (a,b), minimum for +1, maximum for -1

COMPLETING THE SQUARE:

 $x^{2} - 8x + 21$ $x^{2} - 8x + 21 \qquad \text{coefficient of } x, -8, \text{ is halved and squared}, (-4)^{2} \text{ to } 16$ $= x^{2} - 8x + 16 - 16 + 21 \qquad \text{add and subtract } 16$ $= (x - 4)^{2} - 16 + 21 \qquad \text{complete square around trinomial}$ $= (x - 4)^{2} + 5$

CHAPTER 12: PYTHAGORAS' THEOREM

Side length **a** units is opposite the right angle. It is the longest side, the **hypotenuse**.

For **right-angled triangles**:

$$a^2 = b^2 + c^2$$

3D Identify right-angled triangles in 3D diagrams.

face diagonal $AC^2 = 24^2 + 18^2$ = 576 + 324 = 900 $AC = \sqrt{900}$ = 30

space diagonal $AD^2 = 40^2 + 30^2$ = 1600 + 900 = 2500 $AD = \sqrt{2500}$ = 50

slant height
$$VM^2 = 4^2 - 2^2$$

= 16 - 4
= 12
 $VM = \sqrt{12}$
= $2\sqrt{3}$

height
$$VC^2 = (\sqrt{12})^2 - 2^2$$

= 12 - 4
= 8
 $VC = \sqrt{8}$
= $2\sqrt{2}$

CONVERSE OF PYTHAGORAS' THEOREM

Longest side, length **a** units, is opposite the biggest angle.

If

 $a^2 = b^2 + c^2$

then

Show that $\triangle ABC$ is right angled.

$$AB^{2} + BC^{2} = 8^{2} + 6^{2} = 100$$

 $AC^{2} = 10^{2} = 100$

since $AB^2 + BC^2 = AC^2$ by the Converse of Pyth. Thm. $\triangle ABC$ is right - angled at B (ie. $\angle ABC = 90^\circ$)

CHAPTER 13: ANGLES and SHAPE

LINES

page 35

CHAPTER 14: PROPERTIES OF THE CIRCLE

angle in a semicircle is a right-angle.

the perpendicular bisector of a chord is a diameter.

a tangent and the radius drawn to the point of contact form a right-angle.

ANGLES

Calculate the size of angle ABC.

$$\angle OBA = (180^\circ - 120^\circ) \div 2 = 30^\circ$$

tangent CD and radius $OB : \angle OBC = 90^{\circ}$

 $\angle ABC = 90^{\circ} - 30^{\circ} = 60^{\circ}$

Calculate the size of angle BDC.

diameter AB bisects chord $CD : \angle AMD = 90^{\circ}$

 $\triangle AMD \text{ angle sum } 180^\circ$: $\angle ADM = 180^\circ - 90^\circ - 30^\circ = 60^\circ$

angle in a semicircle : $\angle ADB = 90^{\circ}$ $\angle BDC = 90^{\circ} - 60^{\circ} = 30^{\circ}$

PYTHAGORAS' THEOREM

A circular road tunnel, radius 10 metres, is cut through a hill.

The road has a width 16 metres.

Find the height of the tunnel.

the diameter drawn is the perpendicular bisector of the chord: Δ is right-angled so can apply Pyth. Thm.

$x^2 = 10^2 - 8^2$	h = x + 10
= 100 - 64	= 6 + 10
= 36	<i>h</i> =16
$x = \sqrt{36}$	
x = 6	height 16 metres

CHAPTER 15: SIMILAR SHAPES

Shapes are similar if they are enlargement or reductions of each other.

- (1) the angles remain unchanged the shapes are equiangular.
- and (2) the sides are enlarged or reduced by some scale factor (SF).

Triangles are special:

Enlarge or reduce sides by some scale factor and the two triangles will be equiangular. **If triangles are equiangular then they are similar.**

SCALING LENGTH

length scale factor, $SF = \frac{\text{image side}}{\text{original side}}$ enlargement if SF > 1reduction if 0 < SF < 1

$$SF = \frac{image}{original} = \frac{6}{15} = \frac{2}{5}$$
 $0 < SF < 1$ as expected for a reduction

$$x = \frac{2}{5} \times 16 = 6 \cdot 4$$

smaller than 16 as expected for a reduction

for a 2D shape both length and breadth must be scaled.

SCALING AREA length SF = narea SF = n^2

Given that the two shapes shown are similar, find the area of the larger shape.

 $length SF = \frac{image}{original} = \frac{15}{12} = \frac{5}{4}$ SF > 1 as expected for an enlargement $area SF = \frac{5}{4} \times \frac{5}{4} = \frac{25}{16}$ $A = \frac{25}{16} \times 48 = 75$ bigger than 48 as expected for an enlargement

SCALING VOLUME for a 3D shape length, breadth and height must be scaled.

length SF = nvolume SF = n^3

Given that the two solids shown are similar find the volume of the smaller solid.

$$length SF = \frac{image}{original} = \frac{12}{15} = \frac{4}{5} \qquad 0 < SF < 1 \text{ as expected for a reduction}$$

$$volume SF = \frac{4}{5} \times \frac{4}{5} \times \frac{4}{5} = \frac{64}{125}$$

$$V = \frac{64}{125} \times 250 = 128 \qquad smaller \ than \ 250 \ as \ expected \ for \ a \ reduction$$

CHAPTER 16: TRIGONOMETRY: RIGHT-ANGLED TRIANGLES

SOH-CAH-TOA

The sides of a right-angled triangle are labelled:

Opposite: opposite the angle a°. **Adjacent**: next to the angle a°. **Hypotenuse:** opposite the right angle.

The ratios of sides $\frac{O}{H}$, $\frac{A}{H}$ and $\frac{O}{A}$ have values which depend on the size of angle a°. These are called the sine, cosine and tangents of a°, written sin a°, cos a° and tan a°. For example,

$$5 \qquad S = \frac{O}{H} \qquad C = \frac{A}{H} \qquad T = \frac{O}{A}$$
$$\sin a^\circ = \frac{3}{5} \qquad \cos a^\circ = \frac{4}{5} \qquad \tan a^\circ = \frac{3}{4}$$

The trig. function acts on an angle to produce the value of the ratio.

The inverse trig. function acts on the value of a ratio to produce the angle.

For example,

$$\sin 30^{\circ} = 0.5$$

 $\sin^{-1} 0.5 = 30^{\circ}$

ACCURACY

Rounding the angle or the value in a calculation can result in significant errors.

For example,

$100 \times \tan 69.5^{\circ} = 267.462 \approx 267$	$\tan^{-1} 2.747 = 69.996 \approx 70.0$
$100 \times \tan 70^{\circ} = 274.747 \approx 275$	$\tan^{-1} 2.7 = 69.676 \approx 69.7$

FINDING AN UNKNOWN SIDE

FINDING AN UNKNOWN ANGLE

(3) Find *x*.

$$\tan x^{\circ} = \frac{9}{7}$$

$$x = \tan^{-1}\left(\frac{9}{7}\right)$$

$$use \ brackets for \ (9 \div 7), calculator \ set to \ DEGREES$$

$$= 52 \cdot 125 \dots$$

$$x = 52 \cdot 1$$

CHAPTER 17: TRIGONOMETRY: GRAPHS & EQUATIONS

The cosine graph is the sine graph shifted 90° to the left.

The graphs have a PERIOD of 360° (repeat every 360°).

Turning points: maximum (90,1), minimum (270,-1)

maximum (0,1), minimum (180,-1)

The tangent graph has a PERIOD of 180°.

TRANSFORMATIONS Same rules for $y = \sin x^{\circ}$ and $y = \cos x^{\circ}$.

Y-STRETCH $y = \mathbf{n} \sin x^{\circ}$

y-coordinates multiplied by **n**. amplitude **n** units maximum value +**n**, minimum value -**n**

X-STRETCH $y = \sin nx^{\circ}$ x-coordinates divided by **n**. period $360^{\circ} \div n$. There are **n** cycles in 360° .

NOTE: for $y = sin(x+20)^\circ$ the graph $y = sinx^\circ$ would be shifted 20° to the left.

COMBINING TRANSFORMATIONS

EQUATIONS

The graphs with equations $y = 5 + 3 \cos x^{\circ}$ and y = 4 are shown. Find the *x* coordinates of the points of intersection A and B.

tangent function only is positive cosine function only is positive Т

С

IDENTITIES

$$\sin^{2} x^{\circ} + \cos^{2} x^{\circ} = 1$$

$$\tan x^{\circ} = \frac{\sin x^{\circ}}{\cos x^{\circ}}$$

Simplify
$$\frac{1 - \cos^{2} x^{\circ}}{\sin x^{\circ} \cos x^{\circ}}$$

$$= \frac{\sin^{2} x^{\circ}}{\sin x^{\circ} \cos x^{\circ}}$$

$$= \frac{\sin x}{\sin x^{\circ} \cos x^{\circ}}$$
$$= \frac{\sin x^{\circ} \sin x^{\circ}}{\sin x^{\circ} \cos x^{\circ}}$$
$$= \frac{\sin x^{\circ}}{\cos x^{\circ}}$$
$$= \tan x^{\circ}$$

since
$$\sin^2 x^\circ + \cos^2 x^\circ = 1$$

 $\sin^2 x^\circ = 1 - \cos^2 x^\circ$

"*cancel*"
$$\sin x^{\circ}$$

EXACT VALUES $2 \qquad 60^{\circ}$ $30^{\circ} \qquad 1$

For example,

$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$
, $\tan 30^\circ = \frac{1}{\sqrt{3}}$

$$\cos 45^\circ = \frac{1}{\sqrt{2}}$$
, $\tan 45^\circ = \frac{1}{1} = 1$

ANGLES > 90°

CHAPTER 18: TRIGONOMETRY: TRIANGLE FORMULAE

NOTE: requires at least one side and its opposite angle to be known.

FINDING AN UNKNOWN SIDE

Find the length of side BC

FINDING AN UNKNOWN ANGLE

Find the size of angle BAC.

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$

$$\frac{\sin A}{5} = \frac{\sin 55^{\circ}}{6}$$

$$\sin A = \frac{\sin 55^{\circ}}{6} \times 5$$

$$= 0.682....$$

$$A = \sin^{-1}0.682...$$

$$= 43.049...$$

COSINE RULE

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

FINDING AN UNKNOWN SIDE

NOTE: requires knowing 2 sides and the angle between them.

 $a^{2} = b^{2} + c^{2} - 2bc \cos A$ = $6^{2} + 9^{2} - 2 \times 6 \times 9 \times \cos 32^{\circ}$ $a^{2} = 25 \cdot 410....$ $a = \sqrt{25 \cdot 410...}$ = $5 \cdot 040...$ $BC \approx 5 \cdot 0 m$

Find the length of side BC.

FINDING AN UNKNOWN ANGLE

NOTE: requires knowing all 3 sides.

Find the size of angle BAC.

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

= $\frac{6^2 + 9^2 - 5^2}{2 \times 6 \times 9}$
 $\cos A = 0.85185....$
 $A = \cos^{-1}(0.85185....)$
= 31.586.....
 $\angle BAC \approx 31.6^\circ$

AREA FORMULA

Area
$$\triangle ABC = \frac{1}{2}ab\sin C$$

NOTE: requires knowing 2 sides and the angle between them.

(1)

Area
$$\triangle ABC = \frac{1}{2}ab \sin C$$

= $\frac{1}{2} \times 5 \times 6 \times \sin 53^{\circ}$
= $11.979....$
Area $\approx 12.0 m^2$

Find the area of the triangle.

(2)

Find angle ACB.

Area
$$\triangle ABC = \frac{1}{2}ab \sin C$$

 $12 = \frac{1}{2} \times 5 \times 6 \times \sin C$ double both sides
 $24 = 30 \times \sin C$
 $\sin C = 24 \div 30 = 0.8$
 $C = \sin^{-1}(0.8)$
 $= 53.130...^{\circ}$ or $126.869...^{\circ}$
 $(from \ 180^{\circ} - 53.130...^{\circ}$
 $as angle could be obtuse)$
 $\angle ACB \approx 53.1^{\circ}$ from diagram, angle acute

CHAPTER 19: VECTORS

SCALAR quantities have size(magnitude). VECTOR quantities have size and direction. eg. time, speed, volume eg. force, velocity

A directed line segment represents a vector.

Vectors can be written in component form as column vectors

SIZE follows from Pyth. Thm

same size and direction same vector **u** same component form

ADD/SUBTRACT

by column vectors add or subtract components.

$$\binom{-3}{4} + \binom{7}{2} = \binom{4}{6}$$

by diagram "head-to-tail" addition $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$

page 51

MULTIPLY by a number

$$\mathbf{u} = \begin{pmatrix} a \\ b \end{pmatrix} \quad \mathbf{ku} = \begin{pmatrix} \mathbf{k}a \\ \mathbf{k}b \end{pmatrix} \qquad \overrightarrow{AB} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad \overrightarrow{CD} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} \qquad \overrightarrow{CD} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} \qquad \overrightarrow{CD} = 4 \overrightarrow{AB} \qquad \overrightarrow{CD} = 4 \overrightarrow{CD} =$$

3D

Vectors in 3D operate in the same way as vectors in 2D.

If
$$\mathbf{u} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ find the value of $|\mathbf{v} - 2\mathbf{u}|$.

$$\mathbf{v} - 2\mathbf{u} = \begin{pmatrix} -1\\0\\1 \end{pmatrix} - 2 \begin{pmatrix} 1\\-2\\3 \end{pmatrix} = \begin{pmatrix} -1\\0\\1 \end{pmatrix} - \begin{pmatrix} 2\\-4\\6 \end{pmatrix} = \begin{pmatrix} -3\\4\\-5 \end{pmatrix}$$

$$|\mathbf{v} - 2\mathbf{u}| = \sqrt{(-3)^2 + 4^2 + (-5)^2} = \sqrt{50} = 5\sqrt{2}$$

CHAPTER 20: STATISTICS

Studying statistical information, it is useful to consider: (1) typical result: **average** (2) distribution of results: **spread**

AVERAGES:

mean =
$$\frac{total \ of \ all \ results}{number \ of \ results}$$

median = middle result of the ordered results
mode = most frequent result

SPREAD:

Ordered results are split into 4 equal groups so each contains 25% of the results.

The **5 figure summary** identifies: L, Q_1 , Q_2 , Q_3 , H(lowest result, 1st, 2nd and 3rd quartiles, highest result)

A **Box Plot** is a statistical diagram that displays the 5 figure summary:

NOTE: If Q_1 , Q_2 or Q_3 fall between two results, the mean of the two results is taken. For example,

12 ordered results: split into 4 equal groups of 3 results

$$Q_{1} \qquad Q_{2} \qquad Q_{3}$$

$$10 \quad 11 \quad 13 \qquad 17 \quad 18 \quad 20 \qquad 20 \quad 23 \quad 25 \qquad 26 \quad 27 \quad 29$$

$$Q_{1} = \frac{13 + 17}{2} = 15 \quad , \quad Q_{2} = \frac{20 + 20}{2} = 20 \quad , \quad Q_{3} = \frac{25 + 26}{2} = 25 \cdot 5$$

The pulse rates of school students were recorded in Biology class. Pulse rates: 66, 64, 71, 56, 60, 79, 77, 75, 69, 73, 75, 62, 66, 71, 66 beats per minute.

15 ordered results:

5 Figure Summary:

L = 56 , $Q_1 = 64$, $Q_2 = 69$, $Q_3 = 75$, H = 79

Spread:

R = H - L = 79 - 56 = 23

 $IQR = Q_3 - Q_1 = 75 - 64 = 11$

$$SIQR = \frac{Q_3 - Q_1}{2} = \frac{75 - 64}{2} = \frac{11}{2} = 5 \cdot 5$$

Averages: (*total* = 66 + 64 + 71 + ... + 66 = 1030)

$$MEAN = \frac{1030}{15} = 68 \cdot 666... = 68 \cdot 7$$

(Q₂)MEDIAN = 69
MODE = 66

STANDARD DEVIATION

A measure of the spread of a set of data, giving a numerical value to how the data deviates from the mean. It therefore gives an indication of how good the mean is as a representitive of the data set.

Formulae:

mean
$$\overline{x} = \frac{\sum x}{n}$$
 standard deviation $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$ or $s = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}}$

Examples,

(1) High Standard Deviation: results spread out

- mean = 38 , standard deviation = 7.5
- (2) Low Standard Deviation: results clustered around the mean the results are more consistent

mean = 38, standard deviation = 3.8

The pulse rates of 8 army recruits: 61, 64, 65, 67, 70, 72, 75, 78 beats per minute.

 $\overline{x} = \frac{\sum x}{n}$ $= \frac{552}{8}$

=

$\frac{\sum x}{n}$	x	$x - \overline{x}$	$(x-\overline{x})^2$
552	61	-8	64
8	64	-5	25
69	65	-4	16
	67	-2	4
	70	+1	1
	72	+3	9
	75	+6	36
	78	+9	81
TOTALS	552		236

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$
$$= \sqrt{\frac{236}{7}}$$
$$= 5 \cdot 806....$$
$$\approx 5 \cdot 8$$

or

-		
$\overline{x} = \frac{\sum x}{n}$	x	x^2
552	61	3721
$=$ $\frac{1}{8}$	64	4096
= 69	65	4225
	67	4489
	70	4900
	72	5184
	75	5625
	78	6084
TOTALS	552	38324

$$s = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}}$$
$$= \sqrt{\frac{38324 - \frac{552^2}{8}}{7}}$$
$$= \sqrt{\frac{236}{7}}$$
$$= 5 \cdot 806....$$
$$\approx 5 \cdot 8$$

PROBABILITY

The probability of an event A occurring is $P(A) = \frac{\text{number of outcomes involving A}}{\text{total number of outcomes possible}}$

 $0 \le P \le 1$ P = 0 impossible , P = 1 certain P(not A) = 1 - P(A)

number of expected outcomes involving event A = number of trials × P(A)

The experimental results will differ from the theoretical probability.

(1) In an experiment a letter is chosen at random from the word ARITHMETIC and the results recorded.

letter	frequency	relative frequency
vowel	111	$111 \div 300 = 0.37$
consonant	189	$189 \div 300 = 0.63$
	total = 300	total = 1

Estimate of probability,

P(vowel) = 0.37

(2) A letter is chosen at random from the word ARITHMETIC.

4 vowels out of 10 letters,
$$P(vowel) = \frac{4}{10} = \frac{2}{5}$$
 ie. 0.4

for 300 trials, number of vowels expected = number of trials × P(vowel)= 300 × 0.4 = 120

6 consonants out of 10 letters,
$$P(consonant) = \frac{6}{10} = \frac{3}{5}$$
 ie. 0.6
 $P(not \ a \ vowel) = 1 - 0.4 = 0.6$

vowel or consonant,

vowel and consonant,

$$P(either) = \frac{10}{10} = 1$$
 certain $P(both) = \frac{0}{10} = 0$ impossible