## HOME EXERCISE 2: SOLUTIONS

1. 


(a) Calculate the angles $\mathrm{a}^{\circ}$ and $\mathrm{b}^{\circ}$ that the lines shown make with the positive OX direction.
(b) Hence calculate the angle between the two lines.
(a)

$$
\begin{array}{rlrl}
y & =\frac{3}{5} x+3 & y & =\square 2 x+6 \\
y & =m x+C & y & =m x+C \\
m & =\frac{3}{5} & m & =\square 2 \\
\tan a^{\circ} & =\frac{3}{5} & \tan b^{\circ} & =\square 2 \quad\left(\tan ^{\square 1} 2\right) \\
a & =\tan ^{\square 1} \frac{3}{5} & b & =180 \square 63 \cdot 434 \ldots \\
a & =30 \cdot 963 \ldots & b & =116 \cdot 565 \ldots \\
a^{\circ} & =31 \cdot 0^{\circ} & b^{\circ} & =116 \cdot 6^{\circ}
\end{array}
$$

(b)
$b^{\circ} \sqcap a^{\circ}=116 \cdot 565 \ldots П 30 \cdot 963 \ldots=85 \cdot 601 \ldots=85 \cdot 6^{\circ}$
2. Given that the lines with equations $3 x \square 4 y+12=0$ and $y=a x \square 6$ are perpendicular, find the value of a.

$$
\begin{aligned}
& \text { rearrange for } y=m x+C \\
& 3 x \square 4 y+12=0 \\
& 3 x+12=4 y \\
& \frac{3}{4} x+3=y \\
& y=\frac{3}{4} x+3 \\
& y=\frac{3}{4} x+3 \quad y=a x \square 6 \\
& y=m x+C \quad y=m x+C \\
& m_{1}=\frac{3}{4} \quad m_{2}=a
\end{aligned}
$$

3. If $f(x)=2 x \square x^{2}$ and $g(x)=x+1$
(a) write in simplest form $f(g(x))$
(b) If $h(x)=\frac{1}{f(g(x))}$, state the values of $x$ for which the function $h(x)$ is undefined.
(a)

$$
\begin{aligned}
& f(g(x)) \\
= & f(x+1) \\
= & 2(x+1) \square(x+1)^{2} \\
= & 2(x+1) \square\left(x^{2}+2 x+1\right) \\
= & 2 x+2 \square x^{2} \square 2 x \square 1 \\
= & 1 \square x^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
h(x) & =\frac{1}{f(g(x))} & & h(x) \text { undefined where } \\
& =\frac{1}{1 \square x^{2}} & & (1+x)(1 \square x)=0 \\
& =\frac{1}{(1+x)(1 \square x)} & & x=\square 1 \text { or } x=1
\end{aligned}
$$

for perpendicular lines

$$
\begin{aligned}
m_{1} \square m_{2} & =\square 1 \\
\frac{3}{4} \square a & =\square 1 \\
a & =\square \frac{4}{3}
\end{aligned}
$$

$$
\begin{equation*}
\text { wiren tie iunction } n(x) \text { is undenmed. } \tag{2}
\end{equation*}
$$



The graph of the function $f(x)=x^{2} \square 6 x+11$ is shown.
(a) Write $x^{2} \sqcap 6 x+11$ the form $(x+a)^{2}+b$.
(b) The curve meets the $y$-axis at point $\mathrm{P}(0, \mathrm{p})$ and the turning point is $\mathrm{Q}(\mathrm{q}, \mathrm{r})$.
Write the values of $\mathrm{p}, \mathrm{q}$ and r .
(c) If $g(x)=2 \square f(x)$, sketch the graph of $g(x)$, marking clearly the turning point and the points where the graph meets the axes.
(a)

$$
\begin{aligned}
& x^{2} \square 6 x+11 \\
= & x^{2} \square 6 x+9 \square 9+11 \\
= & (x \square 3)^{2} \square 9+11 \\
= & (x \square 3)^{2}+2
\end{aligned}
$$

(b)

$$
\begin{array}{rrrr}
f(x)=x^{2} \square 6 x+11 & \text { minimum at } x=3, & q=3 \\
f(0)=0^{2} \square 6 \square 0+11=11 & f(3) & =(x \square 3)^{2}+2 & \\
& & =(3 \square 3)^{2}+2 & \\
p=11 & & =0^{2}+2 & \\
& & =2 & r=2
\end{array}
$$



