HOME EXERCISE 4: SOLUTIONS

(a)

$$
\begin{aligned}
f(x) & =\frac{1}{3} x^{3} \square x^{2} \\
f([x) & =\frac{1}{3} \square 3 x^{2} \square 2 x \\
& =x^{2} \square 2 x \\
f(\square) & =3^{2} \square 2 \square 3 \\
& =9 \square 6 \\
& =3 \\
m & =3
\end{aligned}
$$

The graph with equation $y=\frac{1}{3} x^{3} \square x^{2}$ is shown.
(a) Line L_{1} is a tangent to the graph at the point $(3,0)$.

Find the equation of line L_{1}.
(b) Line L_{2} is also a tangent to the graph and is parallel to line L_{1}.

Find the x-coordinate of the point where line L_{2} meets the curve.
(b)

$$
\begin{gathered}
f\left((f)=x^{2} \square 2 x, m=3\right. \\
x^{2} \square 2 x=3 \\
x^{2} \square 2 x \square 3=0 \\
(x+1)(x \square 3)=0 \\
x+1=0 \text { or } x \square 3=0 \\
x=\square 1 \text { or } x=3
\end{gathered}
$$

$$
\text { for line } L_{2} \quad x=\square 1
$$

2. (a) Write $3 x^{2}+12 x+20$ the form $a(x+b)^{2}+c$.
(b) Hence state the minimum value of $3 x^{2}+12 x+20$ and the corresponding value of x.
(a)

$$
\begin{aligned}
& 3 x^{2}+12 x+20 \\
= & 3\left(x^{2}+4 x\right)+20 \\
= & 3\left(x^{2}+4 x+4 \square 4\right)+20 \\
= & 3\left(x^{2}+4 x+4\right) \square 12+20 \\
= & 3(x+2)^{2}+8
\end{aligned}
$$

(b)
when $x=\square 2$
$3(x+2)^{2}+8$
$=3 \square(\square 2+2)^{2}+8$
$=3 \square 0^{2}+8$
$=8$
3. (a) Solve the equation $2 \sin x^{\circ}+\sqrt{3}=0,0 \square x \square 360$.
(b) Hence solve the equation $2 \sin (2 x \square 10)^{\circ}+\sqrt{3}=0,0 \square x \square 180$.
(a)

$$
\begin{array}{rlr|l}
2 \sin x^{\circ}+\sqrt{3}=0 & \text { A, S, T, C is where functions are positive: } \\
2 \sin x^{\circ}=\square \sqrt{3} & \sin + & \mathrm{S} & \mathrm{~A} \\
\sin x^{\circ}=\square \frac{\sqrt{3}}{2} & & \sin + \\
x & =240,300 & 180-\mathrm{a}=120^{\circ} & \mathrm{a}=\sin ^{-1} \sqrt{ } 3 / 2=60^{\circ} \\
2 x \square 10=240,300 & & \\
2 x=250,310 & \sin - & \mathrm{T} & \mathrm{C}
\end{array}
$$

(b)
4. If $f(x)=x^{2} \square 1$ and $g(x)=\sqrt{x+1}, x \geq \square 1$
(a) write in simplest form:
(i) $f(g(x))$
(ii) $g(f(x))$.
(b) Comment on the results of part (a) regarding functions f and g.
(a) (i)

$$
\begin{aligned}
f(g(x)) & =f(\sqrt{x+1}) \\
& =(\sqrt{x+1})^{2} \square 1 \\
& =x+1 \square 1
\end{aligned}
$$

(b)
since $f(g(x))=g(f(x))=x$
f and g are inverse functions

$$
=x \quad=x
$$

