## HOME EXERCISE 4: SOLUTIONS



2. (a) Write  $3x^2 + 12x + 20$  the form  $a(x+b)^2 + c$ .

(a)

(b) Hence state the minimum value of  $3x^2 + 12x + 20$  and the corresponding value of x. (2)

(b)  

$$3x^2 + 12x + 20$$
 (b)  
 $= 3(x^2 + 4x) + 20$   $3(x + 2)^2 + 8$  minimum value 8  
 $= 3(x^2 + 4x + 4 - 4) + 20$   $= 3 \times (-2 + 2)^2 + 8$   
 $= 3(x^2 + 4x + 4) - 12 + 20$   $= 3 \times 0^2 + 8$   
 $= 3(x + 2)^2 + 8$   $= 8$ 

(3)

3. (a) Solve the equation  $2\sin x^{\circ} + \sqrt{3} = 0$ ,  $0 \le x \le 360$ . (3)

(b) Hence solve the equation  $2\sin(2x-10)^{\circ} + \sqrt{3} = 0$ ,  $0 \le x \le 180$ .

(2)

(1)

(a)  

$$2\sin x^{\circ} + \sqrt{3} = 0$$
  
 $2\sin x^{\circ} = -\sqrt{3}$   
 $\sin x^{\circ} = -\frac{\sqrt{3}}{2}$   
(b)  
 $2x - 10 = 240, 300$   
 $x = 250, 310$   
 $x = 125, 155$   
A, S, T, C is where functions are positive:  
 $\sin + S$   
 $\sin - S$   
 $\sin -$ 

4. If 
$$f(x) = x^2 - 1$$
 and  $g(x) = \sqrt{x+1}$ ,  $x \ge -1$   
(a) write in simplest form: (i)  $f(g(x))$  (2)  
(ii)  $g(f(x))$ . (2)

(b) Comment on the results of part (a) regarding functions f and g.

(a) (i)  

$$f(g(x)) = f(\sqrt{x+1})$$

$$= (\sqrt{x+1})^{2} - 1$$

$$= x$$
(ii)  
(ii)  

$$g(f(x)) = g(x^{2} - 1)$$
(b)  
since  $f(g(x)) = g(f(x)) = x$   

$$f \text{ and } g \text{ are inverse functions}$$

$$= \sqrt{x^{2}}$$

$$= x$$

$$= x$$