## HOME EXERCISE 5: SOLUTIONS


(a)
$y=x^{2} \square \frac{1}{3} x^{3}=\square\left(\frac{1}{3} x^{3} \square x^{2}\right)$
$y=\square f(x)$, reflection in x -axis

(c)

| x | $<$ | 0 | $>$ | $<$ | 2 | $>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f[(x)$ | + | 0 | - | - | 0 | + |
| x -axis | above | on | below | below | on | above |

The graph with equation $y=\frac{1}{3} x^{3} \square x^{2}$ is shown.

The graph meets the axes at $(0,0)$ and $(3,0)$ and has stationary points $(0,0)$ and $(2,-4 / 3)$.

Use this graph to sketch the graph:
(a) with equation $y=x^{2} \square \frac{1}{3} x^{3}$
(b) with equation $y=x^{3} \square 3 x^{2}$
(c) of the derived function.

Draw your sketches on three separate diagrams.
(b)
$y=x^{3} \square 3 x^{2}=3\left(\frac{1}{3} x^{3} \square x^{2}\right)$
$y=3 f(x), 3 \square y-$ coords
(b)
$y=x^{3} \square 3 x^{2}=3\left(\frac{1}{3} x^{3} \square x^{2}\right)$
$y=3 f(x), 3 \square y-$ coords
(b)
$y=x^{3} \square 3 x^{2}=3\left(\frac{1}{3} x^{3} \square x^{2}\right)$
$y=3 f(x), 3 \square y-$ coords


2. Find $\frac{d}{d t}-\sqrt{t^{3}} \square \frac{1}{\sqrt{t}}-$, writing your answer in root form.

$$
\begin{aligned}
& =\frac{d}{d t}\left(t^{\frac{3}{2}} \square t^{\square \frac{1}{2}}\right) \\
& =\frac{3}{2} t^{\frac{1}{2}}+\frac{1}{2} t^{\square \frac{3}{2}} \\
& =\frac{3}{2} \sqrt{t}+\frac{1}{2 \sqrt{t^{3}}}
\end{aligned}
$$

3. The line passing through the point $(2,-3)$ makes an angle of $135^{\circ}$ with the positive direction of the x -axis. Find the equation of the line, writing your answer in the form $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$.

$$
\begin{align*}
m & =\tan \square^{\circ}  \tag{3}\\
& =\tan 135^{\circ} \\
& =\square \tan 45^{\circ} \\
& =\square 1
\end{align*}
$$

$$
\begin{aligned}
m & =\square 1 \\
y \square b & =m(x \square a) \\
y \square(\square 3) & =\square 1(x \square 2) \\
y+3 & =\square x+2 \\
x+y+1 & =0
\end{aligned}
$$


(a) $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=1$
(b)

$$
\begin{aligned}
2 \sin 3 x^{\circ}+1 & =0 \\
2 \sin 3 x^{\circ} & =\square 1 \\
\sin 3 x^{\circ} & =\square \frac{1}{2} \\
3 x & =210,330 \\
x & =70,110
\end{aligned}
$$

$\mathrm{A}, \mathrm{S}, \mathrm{T}, \mathrm{C}$ is where functions are positive:

| $\sin +\quad \mathrm{S}$ | A |
| :--- | :--- |
| $180-\mathrm{a}=150^{\circ}$ | $\mathrm{a}=\sin ^{-1} 1 / 2=30^{\circ}$ |
| $180+\mathrm{a}=210^{\circ}$ | $360-\mathrm{a}=330^{\circ}$ |
| $\sin -$ | T | $\mathrm{C} \quad \sin -\quad .$| C |
| :--- |

