- 1. The number of bacteria present in a beaker, during an experiment can be measured using the formula $N(t) = 30e^{1.25t}$ where t is the number of hours passed.
- (a) How many bacteria are in the beaker at the start of the experiment?
- (b) Calculate the number of bacteria present after 5 hours.
- (c) How long will it take for the number of bacteria present to treble?
- 2. The mass, M grams, of a radioactive isotope after a time of t years, is given by the formula $M = M_o e^{-kt}$ where M_o is the initial mass of the isotope.

In 5 years a mass of 10 grams of the isotope is reduced to 8 grams.

- (a) Calculate k.
- (b) Calculate the half-life of the substance (time taken for half the substance to decay)

- 3. A cup of coffee cools according to the law $P_t = P_o e^{-kt}$, where P_o is the initial temperature of the coffee and P_t is the temperature after t minutes.
- (a) A cup of coffee cools from 80°C to 60°C in a time of 15 minutes.

 Calculate k.
- (b) By how many degrees will the cup of coffee cool in the next 15 minutes?

- 4. A fire spreads according to the law $A = A_0 e^{kt}$ where A_0 is the area covered by the fire when it is first measured and A is the area covered after t hours.
- (a) If it takes $1^1/2$ hours for the fire to double in area, find k.
- (b) A bush fire covers an area of 800 km². If not tackled, calculate the area the fire will cover 4 hours later.

- 5. The value, V (£million), of a container ship is given by the formula $V = 120e^{-0.065t}$ where t is the number of years after the ship is launched.
- (a) Calculate the value of the ship when it was launched.
- (b) Calculate the percentage reduction in value of the ship after 6 years.

- 6. A cell culture grows at a rate given by the formula $y(t) = Ae^{kt}$ where A is the initial number of cells and y(t) is the number of cells after t hours.
- (a) It takes 24 hours for 500 cells to increase in number to 800. Find k.
- (b) Calculate the time taken for the number of cells to double.

1.
$$N(t) = 30e^{1.25t}$$

(a) $N(0) = 30 \times e^{0} = 30 \times 1 = 30$
(b) $N(5) = 30 \times e^{1.25 \times 5} = 15540.384... = 15540$
(c) $30e^{1.25t} = 90$
 $e^{1.25t} = 3$
 $\log_{e}e^{1.25t} = \log_{e}3$
1.25t $\log_{e}e = \log_{e}3$
1.25t $\times 1 = \log_{e}3$
 $t = \frac{\log_{e}3}{1.25} = 0.8788...$ hours

2.
$$M = M_0 e^{-kt}$$

(a) $10 e^{-k \times 5} = 8$ (b) $100 e^{-0.045t} = 50$
 $e^{-5k} = 0.8$ $e^{-0.045t} = 0.5$
 $\log_e e^{-5k} = \log_e 0.8$ $\log_e e^{-0.045t} = \log_e 0.5$
 $-5k \log_e e = \log_e 0.8$ $-0.045t \log_e e = \log_e 0.5$
 $-5k \times 1 = \log_e 0.8$ $-0.045t \times 1 = \log_e 0.5$
 $k = \frac{\log_e 0.8}{-5}$ $t = \frac{\log_e 0.5}{-0.04462...}$

= 0.04462...

= <u>0.045</u>

 $= 0.8788... \times 60 \text{ min}$

= 15.531...

= <u>15.5 years</u>

= <u>52.7 min</u>

3.
$$P_t = P_o e^{-kt}$$

(a)
$$80 e^{-k \times 15} = 60$$

$$e^{-15k} = 0.75$$

$$\log_e e^{-15k} = \log_e 0.75$$

$$-15 k \log_e e = \log_e 0.75$$

$$-15k \times 1 = log_e 0.75$$

$$k = \frac{\log_e 0.75}{-15}$$

= 0.01917...

(b)
$$P_t = P_o e^{-0.019t}$$

 $P_{15} = 60 \times e^{-0.01917...\times 15}$
 $= 45$

$$60 - 45 = 15^{\circ}$$

4.
$$A = A_o e^{kt}$$

(a)
$$100 e^{k \times 1.5} = 200$$
 (b) $A = A_0 e^{0.46t}$

$$e^{1.5k} = 2$$

$$\log_e e^{1.5k} = \log_e 2$$

$$1.5 \text{k} \log_{e} = \log_{e} 2$$

$$1.5k \times 1 = log_e 2$$

$$k = \frac{\log_e 2}{1.5}$$

= 0.4620...

(b)
$$A = A_o e^{0.46t}$$

$$= 800 \times e^{0.4620...\times 4}$$

$$= 5080 \, \text{m}^2$$

5.
$$N(t) = 120e^{-0.065t}$$

(a)
$$N(0) = 120 \times e^{0} = 120 \times 1 = 120$$

(b)
$$N(6) = 120 \times e^{-0.065 \times 6} = 81.246...$$

$$\frac{38.753...}{120} \times 100 \% = 32.294... \% = $\underline{32.3\%}$$$

6.
$$y(t) = Ae^{kt}$$

(a)
$$500 e^{k \times 24} = 800$$

$$e^{24k} = 1.6$$

$$\log_e e^{24k} = \log_e 1.6 \qquad \qquad \log_e e^{0.02t} = \log_e 2$$

$$24k \log_e e = \log_e 1.6 \qquad 0.02t \log_e e = \log_e 2$$

$$24k \times 1 = log_e 1.6$$

$$k = \frac{\log_e 1.6}{24}$$

= 0.01958...

(a)
$$500 e^{k \times 24} = 800$$
 (b) $500 e^{0.02t} = 1000$

$$e^{0.02t} = 2$$

$$\log_e e^{0.02t} = \log_e 2$$

$$0.02t \times 1 = log_e 2$$

$$t = \frac{\log_e 2}{0.01958...}$$

- 9. The number of bacteria present in a beaker, during an experiment can be measured using the formula $N(t) = 30e^{1.25t}$ where t is the number of hours passed.
- (a) How many bacteria are in the beaker at the start of the experiment?
- (b) Calculate the number of bacteria present after 5 hours.
- (c) How long will it take for the number of bacteria present to treble?

```
9. N(t) = 30e^{1.25t}

(a) N(0) = 30 \times e^{0} = 30 \times 1 = 30

(b) N(5) = 30 \times e^{1.25 \times 5} = 15540.384... = 15540

(c) 30e^{1.25t} = 90

e^{1.25t} = 3

log_e e^{1.25t} = log_e 3

1.25t log_e e = log_e 3

1.25t \times 1 = log_e 3

t = \frac{log_e 3}{1.25} = 0.8788... hours

= 0.8788... \times 60 min

= 52.7 min
```

10. The mass, M grams, of a radioactive isotope after a time of t years, is given by the formula $M = M_o e^{-kt}$ where M_o is the initial mass of the isotope.

In 5 years a mass of 10 grams of the isotope is reduced to 8 grams.

- (a) Calculate k.
- (b) Calculate the half-life of the substance (time taken for half the substance to decay)

10.
$$M = M_0 e^{-kt}$$

(a) $10 e^{-k \times 5} = 8$ (b) $100 e^{-0.045t} = 50$
 $e^{-5k} = 0.8$ $e^{-0.045t} = 0.5$
 $\log_e e^{-5k} = \log_e 0.8$ $\log_e e^{-0.045t} = \log_e 0.5$
 $-5k \log_e e = \log_e 0.8$ $-0.045t \log_e e = \log_e 0.5$
 $-5k \times 1 = \log_e 0.8$ $-0.045t \times 1 = \log_e 0.5$
 $k = \frac{\log_e 0.8}{-5}$ $t = \frac{\log_e 0.5}{-0.04462...}$
 $= 0.04462...$ $= 15.531...$
 $= 0.045$ $= 15.5 \text{ years}$

- 11. A cup of coffee cools according to the law $P_t = P_o e^{-kt}$, where P_o is the initial temperature of the coffee and P_t is the temperature after t minutes.
- (a) A cup of coffee cools from 80°C to 60°C in a time of 15 minutes.

 Calculate k.
- (b) By how many degrees will the cup of coffee cool in the next 15 minutes?

11.
$$P_t = P_o e^{-kt}$$

(a) $80 e^{-k \times 15} = 60$ (b) $P_t = P_o e^{-0.019t}$
 $e^{-15k} = 0.75$ $P_{15} = 60 \times e^{-0.01917... \times 15}$
 $log_e e^{-15k} = log_e 0.75$ $= 45$
 $-15k log_e e = log_e 0.75$ $= 60 - 45 = 15^\circ$
 $k = \frac{log_e 0.75}{-15}$
 $= 0.01917...$
 $= 0.019$

- 12. A fire spreads according to the law $A = A_0 e^{kt}$ where A_0 is the area covered by the fire when it is first measured and A is the area covered after t hours.
- (a) If it takes $1^{1}/_{2}$ hours for the fire to double in area, find k.
- (b) A bush fire covers an area of 800 km². If not tackled, calculate the area the fire will cover 4 hours later.

12.
$$A = A_0 e^{kt}$$

(a) $100 e^{k \times 1.5} = 200$ (b) $A = A_0 e^{0.46t}$
 $e^{1.5k} = 2$ $= 800 \times e^{0.46t}$
 $\log_e e^{1.5k} = \log_e 2$ $= 5079.68$
 $1.5k \log_e e = \log_e 2$ $= \frac{5080 \text{ m}^2}{1.5}$
 $1.5k \times 1 = \log_e 2$ $= 0.4620...$
 $1.5k \times 1 = 0.4620...$

(b)
$$A = A_0 e^{0.461}$$

= $800 \times e^{0.4620... \times 4}$
= $5079.683...$
= $\underline{5080 \text{ m}}^2$

- 13. The value, V (£million), of a container ship is given by the formula $V = 120e^{-0.065t}$ where t is the number of years after the ship is launched.
- (a) Calculate the value of the ship when it was launched.
- (b) Calculate the percentage reduction in value of the ship after 6 years.

```
13. N(t) = 120e^{-0.065t}
```

(a)
$$N(0) = 120 \times e^{0} = 120 \times 1 = 120$$

(b)
$$N(6) = 120 \times e^{-0.065 \times 6} = 81.246...$$

reduction 120 - 81.246... = 38.753...

$$\frac{38.753...}{120} \times 100 \% = 32.294... \% = $\frac{32.3\%}{120}$$$

- 14. A cell culture grows at a rate given by the formula $y(t) = Ae^{kt}$ where A is the initial number of cells and y(t) is the number of cells after t hours.
- (a) It takes 24 hours for 500 cells to increase in number to 800. Find k.
- (b) Calculate the time taken for the number of cells to double.

14.
$$y(t) = Ae^{kt}$$

(a) $500e^{k \times 24} = 800$ (b) $500e^{0.02t} = 1000$
 $e^{24k} = 1.6$ $e^{0.02t} = 2$
 $log_e e^{24k} = log_e 1.6$ $log_e e^{0.02t} = log_e 2$
24k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
24k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
24k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
24k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
24k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
24k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
24k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
24k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
24k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
25k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
27k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
28k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
29k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
20log_e $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
20log_e $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
28k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
29k $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
20log_e $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$
20log_e $log_e e = log_e 1.6$ 0.02t $log_e e = log_e 2$