SCIENTIFIC NOTATION (Standard Form)

1. Write in scientific notation:

- (a) 12800
- (b) 340 000 000
- (c) 53000
- (d) 418 200

- (e) 340 million
- (f) 670 000 000 000
- (g) 12.8 million
- (h) 710300000

- (i) 0.00468
- (i) 0.000063
- (k) 0.0000000005
- (1) 0.000528

- (m) 0.00000791
- (n) 0.352
- (o) 0.000063
- (p) 0.000000302

- (q) 700×10^3
- (r) 400×10^{-8}
- (s) $61 \cdot 7 \times 10^{12}$
- (t) 15×10^{-3}

- (u) 0.7×10^5
- (v) 0.003×10^{-4}
- (w) 0.126×10^9
- (x) 0.075×10^{-7}

2. Write as a normal number:

- (a) 7×10^5
- (b) 3×10^4
- (c) $4 \cdot 3 \times 10^5$
- (d) $5 \cdot 2 \times 10^{1}$

- (e) 3.45×10^3 (f) 5.24×10^7 (g) 9.32×10^2
- (h) 6.125×10^5

- (i) 4×10^{-5}
- (j) 9×10^{-1}
- (k) 3.4×10^{-3}
- (1) $6 \cdot 2 \times 10^{-1}$

- (m) 5.4×10^{-6}
- (n) $7 \cdot 26 \times 10^{-4}$
- (o) 8.62×10^{-5}
- (p) $4 \cdot 31 \times 10^{-3}$

All of the following questions will require a calculator. Write answers both before and after rounding. Write your answers in scientific notation and correct to 3 significant figures.

3. (a)
$$(3.12 \times 10^{12}) \times (4.65 \times 10^{6})$$

(b)
$$(4 \cdot 7 \times 10^7) \times (2 \cdot 16 \times 10^{15})$$

(c)
$$(5.6 \times 10^8) \times (3.17 \times 10^{-4})$$

(d)
$$(6.3 \times 10^{-14}) \times (5.25 \times 10^{9})$$

(e)
$$(2.86 \times 10^{-5}) \times (3.4 \times 10^{-9})$$

(f)
$$(8.72 \times 10^{-15}) \times (1.265 \times 10^{-6})$$

(g)
$$\left(7 \cdot 2 \times 10^{19}\right) \div \left(5 \cdot 7 \times 10^{6}\right)$$

(h)
$$(2.63 \times 10^9) \div (1.9 \times 10^{15})$$

(i)
$$\frac{9 \cdot 15 \times 10^9}{4 \cdot 26 \times 10^{-4}}$$

(i)
$$\frac{9 \cdot 15 \times 10^9}{4 \cdot 26 \times 10^{-4}}$$
 (j) $\frac{8 \cdot 5 \times 10^{-8}}{3 \cdot 76 \times 10^{14}}$

(k)
$$\frac{6 \cdot 4 \times 10^{-12}}{8 \cdot 26 \times 10^{-5}}$$

(k)
$$\frac{6 \cdot 4 \times 10^{-12}}{8 \cdot 26 \times 10^{-5}}$$
 (l) $\frac{5 \cdot 18 \times 10^{-6}}{7 \cdot 25 \times 10^{-15}}$

4. If
$$A = 4.25 \times 10^3$$
, $B = 8.4 \times 10^9$ and $C = 1.05 \times 10^{-6}$, evaluate:

- (a) AB
- (b) *BC*
- (c) A^{2}
- (d) C^2

- (e) B^2C
- (f) $(BC)^2$
- (g) $\frac{B}{C}$
- (h) $\frac{C}{A}$

- (i) $\frac{A^2}{R}$
- (j) $\frac{B}{AC}$
- (k) $\frac{A}{C} + B$
- (1) $\frac{A}{R} + C$

5. One **milligram** of hydrogen gas contains 2.987×10^{20} molecules.

Calculate:

- (a) the number of molecules in 1.2 grams of hydrogen gas.
- (b) the mass, in milligrams, of one molecule of hydrogen.
- 6. The density of hydrogen at 0° C is $8 \cdot 987 \times 10^{-5}$ grams for every **cubic centimetre**.

Calculate:

- (a) the mass of 3 **litres** of hydrogen.
- (b) the volume, in cubic centimetres, of 6 grams of hydrogen.
- 7. There are 6.022×10^{23} atoms in 22.4 **litres** of helium gas.

This amount of gas has a mass of 4.003 grams.

Calculate:

- (a) the number of atoms in 1 millilitre of helium gas.
- (b) the mass, in grams, of one atom of helium.
- 8. There are 1650 763.73 wavelengths of orange Krypton light in one metre.

So there are 1.65076373×10^6 wavelengths in 1 metre.

Calculate:

- (a) the number of wavelengths in 80 centimetres.
- (b) the length in **centimetres** of 1 wavelength.
- 9. The second is defined as the duration of 9192 631770 periods of the radiation of the caesium atom.

So there are $9 \cdot 192631770 \times 10^9$ periods in 1 **second**.

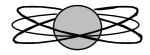
Calculate:

- (a) the number of periods in 2 minutes.
- (b) the time in seconds for 1 period.
- 10. The surface area of a sphere, radius r , is given by the formula $A = 4\pi r^2$.

The Moon is roughly spherical in shape.

The radius of the Moon is 1.738×10^3 kilometres.

Calculate the surface area of the Moon in square kilometres.


Questions 11 and 12 involve calculating the volume of a sphere.

The volume of a sphere, radius r, is given by the formula $V = \frac{4}{3}\pi r^3$.

11. Gases such as helium contain atoms roughly spherical in shape.

The radius of an atom of helium is 1.28×10^{-8} centimetres.

Calculate the volume, in cubic centimetres, of one helium atom.

12. The Sun is spherical in shape.

The radius of the Sun is 6.960×10^5 kilometres.

(a) Calculate the volume of the Sun in cubic kilometres.

The average density of the Sun is $1 \cdot 409 \times 10^9$ tonnes for every cubic kilometre.

(b) Calculate the mass of the Sun in tonnes.

ANSWERS

1. (a) 1.28×10^4

(b) 3.4×10^8

(e) 3.4×10^8

(f) $6 \cdot 7 \times 10^{11}$

(i) 4.68×10^{-3}

(j) $6 \cdot 3 \times 10^{-5}$

(m) 7.91×10^{-6} (q) 7×10^{5} (n) 3.52×10^{-1}

() 7 104

(r) 4×10^{-6}

(u) 7×10^4

(v) 3×10^{-7}

2. (a) 700 000

(b) 30000

(e) 3450

(f) 52400000

(i) 0.00004

(j) 0.9

(m) 0.0000054

(n) 0.000726

. .

3. (a) $1.4508 \times 10^{19} = 1.45 \times 10^{19}$

(c) $1 \cdot 7752 \times 10^5 = 1 \cdot 78 \times 10^5$

(e) $9.724 \times 10^{-14} = 9.72 \times 10^{-14}$

(g) $1 \cdot 2631... \times 10^{13} = 1 \cdot 26 \times 10^{13}$

(i) $2 \cdot 1478... \times 10^{13} = 2 \cdot 15 \times 10^{13}$

(k) $7 \cdot 7481... \times 10^{-8} = 7 \cdot 75 \times 10^{-8}$

4. (a) 3.57×10^{13}

(c) $1.80625 \times 10^7 = 1.81 \times 10^7$

(e) $7 \cdot 4088 \times 10^{13} = 7 \cdot 41 \times 10^{13}$

(g) 8.00×10^{15}

(i) $2.5598....\times10^{-13} = 2.56\times10^{-13}$

(k) $1 \cdot 2447.... \times 10^{10} = 1 \cdot 24 \times 10^{10}$

5. (a) $3.5844 \times 10^{23} = 3.58 \times 10^{23}$ molecules

6. (a) $2 \cdot 6961... \times 10^{-1} = 2 \cdot 70 \times 10^{-1}$ grams

7. (a) $2.6883...\times10^{19} = 2.69\times10^{19}$ atoms

8. (a) $1 \cdot 3206 \dots \times 10^6 = 1 \cdot 32 \times 10^6$

9. (a) $1 \cdot 1031.... \times 10^{12} = 1 \cdot 10 \times 10^{12}$

10. $3.7958.... \times 10^7 = 3.80 \times 10^7 \text{ km}^2$

11. $8 \cdot 7845... \times 10^{-24} = 8 \cdot 78 \times 10^{-24} \text{ cm}^3$

12. (a) $1.4122.... \times 10^{18} = 1.41 \times 10^{18} \text{ km}^3$

(c) $5 \cdot 3 \times 10^4$

(d) 4.182×10^5

(g) 1.28×10^7

(h) $7 \cdot 103 \times 10^8$

(k) 5×10^{-10}

(1) $5 \cdot 28 \times 10^{-4}$

(o) $6 \cdot 3 \times 10^{-5}$

(p) 3.02×10^{-7}

(s) $6 \cdot 17 \times 10^{13}$

(t) 1.5×10^{-2}

(w) 1.26×10^8

(x) 7.5×10^{-9}

(c) 430 000

(d) 52

(g) 932

(h) 612 500

(k) 0.0034

(1) 0.62

(o) 0.0000862

(p) 0.00431

(b) $1.0152 \times 10^{23} = 1.02 \times 10^{23}$

(d) $3 \cdot 3075 \times 10^{-4} = 3 \cdot 31 \times 10^{-4}$

(f) $1 \cdot 10308 \times 10^{-20} = 1 \cdot 10 \times 10^{-20}$

(h) $1.3842...\times10^{-6} = 1.38\times10^{-6}$

(j) $2 \cdot 2606 \dots \times 10^{-22} = 2 \cdot 26 \times 10^{-22}$

(1) $7 \cdot 1448... \times 10^8 = 7 \cdot 14 \times 10^8$

(b) 8.82×10^3

(d) $1 \cdot 1025 \times 10^{-12} = 1 \cdot 10 \times 10^{-12}$

(f) $7 \cdot 77924 \times 10^7 = 7 \cdot 78 \times 10^7$

(h) $2 \cdot 4705... \times 10^{-10} = 2 \cdot 47 \times 10^{-10}$

(j) $1.8823....\times10^{12} = 1.88\times10^{12}$

(1) $1.5559.... \times 10^{-6} = 1.56 \times 10^{-6}$

(b) $3 \cdot 3478... \times 10^{-21} = 3 \cdot 35 \times 10^{-21}$ milligrams

(b) $6.6763....\times10^4 = 6.68\times10^4$ cm³

(b) $6 \cdot 6472... \times 10^{-24} = 6 \cdot 65 \times 10^{-24}$ grams

(b) $6.0578...\times10^{-5} = 6.06\times10^{-5}$ metres

(b) $1.0878....\times10^{-10} = 1.09\times10^{-10}$ seconds

(b) $1.9898... \times 10^{27} = 1.99 \times 10^{27}$ tonnes