SPEED: SCIENTIFIC NOTATION

All of the following questions will require a calculator. Write answers both before and after rounding. Write your answers in **scientific notation** and correct to **3 significant figures**.

- 1. A human hair grows at a rate of $3 \cdot 046 \times 10^{-9}$ metres per second. Calculate the time in **days** for a human hair to grow by 5 centimetres.
- 2. The New Horizons space probe travels at an average speed of $1 \cdot 378 \times 10^4$ metres per second. Calculate the distance, in **kilometres**, the probe will travel in 6 hours.

Questions 3 and 4 use the **speed of light** which is $2 \cdot 998 \times 10^5$ kilometres per second.

- 3. The Sun is $1 \cdot 496 \times 10^8$ kilometres from earth. Calculate the time in seconds for light from the Sun to reach earth.
- 4. The Sun is $2 \cdot 869 \times 10^{9}$ kilometres from the planet Uranus. Calculate the time in **minutes** for light from the Sun to reach Uranus.
- 5. A satellite in a high altitude orbit lies directly above the equator.

It travels around the earth in a circle, in the same direction and taking exactly the same time, 24 **hours**, as the earth's rotation.

Seen from the earth the satellite then appears stationary overhead.

The orbit height is $3 \cdot 592 \times 10^7$ metres. The earth's radius is $6 \cdot 3782 \times 10^6$ metres at the equator.

Calculate: (a) the diameter of the orbit.

- (b) the circumference of the orbit.
- (c) the speed, in metres per **second**, of the satellite in its orbit .
- 6. A satellite in a polar orbit lies above the earth at a height of $8 \cdot 715 \times 10^5$ metres. It travels around the earth in a circle, taking 102 **minutes** to complete one orbit. The radius of the earth around the poles is $6 \cdot 3568 \times 10^6$ metres.

Calculate: (a) the diameter of the orbit.

- (b) the circumference of the orbit.
- (c) the speed, in metres per **second**, of the satellite in its orbit.
- 7. The Hubble Space Telescope is in a low altitude orbit at a height of $6 \cdot 104 \times 10^5$ metres. It travels around the earth in a circle at a speed of $7 \cdot 537 \times 10^3$ metres per **second**. The average radius of the earth is $6 \cdot 371 \times 10^6$ metres.

Calculate: (a) the diameter of the orbit.

- (b) the circumference of the orbit.
- (c) the time, in **minutes**, for the Hubble Space Telescope to complete one orbit.

ANSWERS

- 1. $1 \cdot 8998.... \times 10^2 = 1 \cdot 90 \times 10^2$ days
- 2. $2 \cdot 97648 \times 10^5 = 2 \cdot 98 \times 10^5$ kilometres
- 3. $4 \cdot 9899... \times 10^2 = 4 \cdot 99 \times 10^2$ seconds
- 4. $1 \cdot 5949.... \times 10^2 = 1 \cdot 59 \times 10^2$ minutes
- 5. (a) $8 \cdot 4596... \times 10^7 = 8 \cdot 46 \times 10^7$ m (b) $2 \cdot 6576... \times 10^8 = 2 \cdot 66 \times 10^8$ m (c) $3 \cdot 0760... \times 10^3 = 3 \cdot 08 \times 10^3$ m/s
- 6. (a) $1 \cdot 4456... \times 10^7 = 1 \cdot 45 \times 10^7$ m (b) $4 \cdot 5416... \times 10^7 = 4 \cdot 54 \times 10^7$ m (c) $7 \cdot 4210... \times 10^3 = 7 \cdot 42 \times 10^3$ m/s
- 7. (a) $1 \cdot 3962... \times 10^7 = 1 \cdot 40 \times 10^7$ m (b) $4 \cdot 3865... \times 10^7 = 4 \cdot 39 \times 10^7$ m (c) $9 \cdot 7000... \times 10^1 = 9 \cdot 70 \times 10^1$ minutes