SPEED: SCIENTIFIC NOTATION

All of the following questions will require a calculator. Write answers both before and after rounding. Write your answers in scientific notation and correct to $\mathbf{3}$ significant figures.

1. A human hair grows at a rate of $3 \cdot 046 \Pi 10^{\square 9}$ metres per second.

Calculate the time in days for a human hair to grow by 5 centimetres.
2. The New Horizons space probe travels at an average speed of $1 \cdot 378 \sqcap 10^{4}$ metres per second. Calculate the distance, in kilometres, the probe will travel in 6 hours.

Questions 3 and 4 use the speed of light which is $2 \cdot 998 \sqcap 10^{5}$ kilometres per second.
3. The Sun is $1 \cdot 496 \Pi 10^{8}$ kilometres from earth.

Calculate the time in seconds for light from the Sun to reach earth.
4. The Sun is $2 \cdot 869 \sqcap 10^{9}$ kilometres from the planet Uranus.

Calculate the time in minutes for light from the Sun to reach Uranus.
5. A satellite in a high altitude orbit lies directly above the equator.
It travels around the earth in a circle, in the same direction and taking exactly the same time, 24 hours, as the earth's rotation.
Seen from the earth the satellite then appears stationary overhead.

The orbit height is $3 \cdot 592 \Pi 10^{7}$ metres. The earth's radius is $6 \cdot 3782 \Pi 10^{6}$ metres at the equator.

Calculate: (a) the diameter of the orbit.
(b) the circumference of the orbit.
(c) the speed, in metres per second, of the satellite in its orbit .
6. A satellite in a polar orbit lies above the earth at a height of $8 \cdot 715 \Pi 10^{5}$ metres.

It travels around the earth in a circle, taking 102 minutes to complete one orbit.
The radius of the earth around the poles is $6 \cdot 3568 ~ \sqcap 10^{6}$ metres.
Calculate: (a) the diameter of the orbit.
(b) the circumference of the orbit.
(c) the speed, in metres per second, of the satellite in its orbit.
7. The Hubble Space Telescope is in a low altitude orbit at a height of $6 \cdot 104 \Pi 10^{5}$ metres. It travels around the earth in a circle at a speed of $7 \cdot 537 \Pi 10^{3}$ metres per second.
The average radius of the earth is $6 \cdot 371 \sqcap 10^{6}$ metres.
Calculate: (a) the diameter of the orbit.
(b) the circumference of the orbit.
(c) the time, in minutes, for the Hubble Space Telescope to complete one orbit.

ANSWERS

1. $1 \cdot 8998 \ldots . \square 10^{2}=1 \cdot 90 \square 10^{2}$ days
2. $2 \cdot 97648 ~ \sqcap 10^{5}=2 \cdot 98 \Pi 10^{5}$ kilometres
3. $4 \cdot 9899 \ldots . \ldots 10^{2}=4 \cdot 99 \Pi 10^{2}$ seconds
4. $1 \cdot 5949 \ldots . П 10^{2}=1 \cdot 59 \Pi 10^{2}$ minutes
5. (a) $8 \cdot 4596 \ldots \Pi 10^{7}=8 \cdot 46 \sqcap 10^{7} \mathrm{~m}$
(b) $2 \cdot 6576 \ldots . . \Pi 10^{8}=2 \cdot 66 \Pi 10^{8} \mathrm{~m}$
(c) $3 \cdot 0760 \ldots \square 10^{3}=3 \cdot 08 \Pi 10^{3} \mathrm{~m} / \mathrm{s}$
6. (a) $1 \cdot 4456 \ldots . . \sqcap 10^{7}=1 \cdot 45 \sqcap 10^{7} \mathrm{~m}$
(b) $4 \cdot 5416 \ldots . . \Pi 10^{7}=4 \cdot 54 \Pi 10^{7} \mathrm{~m}$
(c) $7 \cdot 4210 \ldots . \Pi 10^{3}=7 \cdot 42 \Pi 10^{3} \mathrm{~m} / \mathrm{s}$
7. (a) $1 \cdot 3962 \ldots . . \sqcap 10^{7}=1 \cdot 40 \Pi 10^{7} \mathrm{~m}$
(b) $4 \cdot 3865 \ldots . \Pi 10^{7}=4 \cdot 39 \Pi 10^{7} \mathrm{~m}$
(c) $9 \cdot 7000 \ldots . \Pi 10^{1}=9 \cdot 70 \Pi 10^{1}$ minutes
