TRIGONOMETRIC GRAPHS

© 2004 D R Turnbull
This material may be used for non-profit educational purposes only and must include this copyright notice.

MAXIMUM $4 \times 1+6=10 \quad$ when $3 x=90$

$$
\mathrm{x}=30
$$

MINIMUM $4 \times(-1)+6=2 \quad$ when

$$
3 x=270
$$

$$
x=90
$$

maximum value 10 when $x=30$
minimum value 2 when $x=90$
or maximum turning point $(30,10)$
or minimum turning point $(90,2)$

$5+3 \cos x^{\circ}=4$
$3 \cos x^{\circ}=-1$
$\cos \mathrm{x}^{\circ}=-1 / 3$
$\mathrm{x}=109 \cdot 5$ or $\mathrm{x}=250 \cdot 5$

A, S, T, C where functions positive:

S $\cos -$ $180-\mathrm{a}=109 \cdot 5^{\circ}$	$\mathrm{a}=\cos ^{-1} 1 / 3=70 \cdot 528 \ldots{ }^{\circ}$
$180+\mathrm{a}=250 \cdot 5^{\circ}$	$360-\mathrm{a}=289 \cdot 5^{\circ}$
$\cos -\quad$	$\cos +$
T	C

1.

2.

3.

4.

5.

6.

9.

13.

14.

15.

16.

17. The graph is of the form $y=a \cos b x$. Find the values of a and b.

18. The graph is of the form $y=a \cos b x$. Find the values of a and b.

22.

23.

24.

25. Y The graph is of the form $y=a \sin b x+c$. Find the values of a, b and c.

26. Y The graph is of the form $y=a \sin b x+c$. Find the values of a, b and c.

29.

For questions 31 to 36 find the co-ordinates of the maximum and minimum turning points of the graph.

33.

36.

For questions 37 to 51 give your answers correct to one decimal place.
37.

38.

39.

40.

41.

42.

43.

44.

45. Y The graph with equation $\mathrm{y}=3+5 \sin \mathrm{x}^{\circ}$ meets the x -axis at the points A and B as shown. Find the x co-ordinates of the points A and B .

46.

The graphs with equations $y=6 \sin 2 x$ and $y=4$ are shown.

47.

48.

49. The graphs with equations $y=9 \sin (x+12)^{\circ}$ and $y=7$ are shown.

The graphs with equations $\mathrm{y}=10 \cos (\mathrm{x}-18)^{\circ}$ and $\mathrm{y}=8$ are shown.
50.

Find the x co-ordinates of the points of intersection A and B .

51.

The graphs with equations $y=5 \sin (x-10)^{\circ}$ and $y=-4$ are shown.

52.

The graph shows the depth of water in a harbour over a 24 hour period.
The depth, D metres, at time t hours after midnight, is given by the formula $\mathrm{D}=10+6 \sin 15 \mathrm{t}^{\circ}$.
(a) Find the maximum and minimum depths of water in the harbour and the times of day they occur.
(b) Find the depth of water in the harbour at 2 pm .
(c) To safely leave the harbour a ship needs to have a depth of at least 13 metres of water. Between which two times of day can the ship safely leave the harbour?
53.

The graph shows the depth of water in a harbour over a 12 hour period.
The depth, D metres, at time t hours after midnight, is given by the formula $\mathrm{D}=16-10 \sin 30 \mathrm{t}^{\circ}$.
(a) Find the maximum and minimum depths of water in the harbour and the times of day they occur.
(b) Find the depth of water in the harbour at 1 am .
(c) To safely leave the harbour a ship needs to have a depth of at least 21 metres of water.

Between which two times of day can the ship safely leave the harbour?

The graph shows the depth of water in a harbour over a 36 hour period.
The depth, D metres, at time t hours after midnight on Sunday, is given by the formula $D=5 \sin (10 t-15)^{\circ}+7$.
(a) Find the maximum and minimum depths of water in the harbour and the times they occur.
(b) Find the depth of water in the harbour at midnight on Sunday.
(c) Find the depth of water in the harbour at 430 am on Monday.
(d) To safely leave the harbour a boat needs to have a depth of at least 4.5 metres of water. Between which two times can the boat not safely leave the harbour?
55.

The graph shows the depth of water in a harbour over a 12 hour period.
The depth, D metres, at time t hours after midnight, is given by the formula $\mathrm{D}=9+6 \cos (30 \mathrm{t}-15)^{\circ}$.
(a) Find the maximum and minimum depths of water in the harbour and the times they occur.
(b) Find the depth of water in the harbour at midnight.
(c) Find the depth of water in the harbour at 645 am .
(d) To safely leave the harbour a boat needs to have a depth of at least $3 \cdot 2$ metres of water.

Between which two times of the morning can the boat not safely leave the harbour?

Answers

1.	$\mathrm{a}=6$	$\mathrm{~b}=2$
3.	$\mathrm{a}=3$	$\mathrm{~b}=4$
5.	$\mathrm{a}=16$	$\mathrm{~b}=3$
7.	$\mathrm{a}=5$	$\mathrm{~b}=3$
9.	$\mathrm{a}=11$	$\mathrm{~b}=5$
11.	$\mathrm{a}=4$	$\mathrm{~b}=6$
13.	$\mathrm{a}=2 \cdot 5$	$\mathrm{~b}=10$
15.	$\mathrm{a}=5$	$\mathrm{~b}=0 \cdot 5$
17.	$\mathrm{a}=-6$	$\mathrm{~b}=4$
19.	$\mathrm{a}=3$	$\mathrm{~b}=5$
21.	$\mathrm{a}=7$	$\mathrm{~b}=10$
23.	$\mathrm{a}=2$	$\mathrm{~b}=25$
25.	$\mathrm{a}=20$	$\mathrm{~b}=6$
27.	$\mathrm{a}=10$	$\mathrm{~b}=30$
29.	$\mathrm{a}=17.5$	$\mathrm{~b}=12$

31. $\max (5,25) \min (15,5)$
32. $\max (6,30) \min (18,-10)$
33. $\max (3,160) \min (39,40)$
34. $53 \cdot 1$ and $126 \cdot 9$
35. $70 \cdot 5$ and 289.5
36. $241 \cdot 0$ and 299.0
37. 14.5 and 165.5
38. $216 \cdot 9$ and $323 \cdot 1$
39. $65 \cdot 9$ and $114 \cdot 1$
40. $39 \cdot 1$ and $116 \cdot 9$
41. $243 \cdot 1$ and $316 \cdot 9$
42. (a) max $6 \mathrm{am} ; 16 \mathrm{~m}$
43. (a) max $9 \mathrm{am} ; 26 \mathrm{~m}$
min $6 \mathrm{pm} ; 4 \mathrm{~m}$
(b) 7 m
(c) 2 am and 10 am
44. (a) max Mon 10.30am; 12m
(b) 5.7 m
(c) 9.5 m
(d) Mon 10.30 pm and Tues 10.30 am
(b) 11 m
(c) 7 am and 11 am
45. (a) max Mon 10.30am , 12m min Tues 4.30am; 2m
min 3am; 6 m
46. 56.4 and 123.6
47. 228.6 and 311.4
48. $146 \cdot 4$ and 213.6
49. $68 \cdot 0$ and $292 \cdot 0$
50. $20 \cdot 9$ and $69 \cdot 1$
51. 24.3 and $65 \cdot 7$
52. $54 \cdot 9$ and $341 \cdot 1$
53. $a=10 \quad b=6$
54. $\mathrm{a}=8 \quad \mathrm{~b}=5$
55. $\mathrm{a}=12 \quad \mathrm{~b}=2$
56. $\mathrm{a}=9 \quad \mathrm{~b}=12$
57. $\mathrm{a}=18 \quad \mathrm{~b}=3$
58. $\mathrm{a}=14 \quad \mathrm{~b}=9$
59. $\mathrm{a}=-7 \quad \mathrm{~b}=3$
60. $\mathrm{a}=3 \cdot 2 \quad \mathrm{~b}=3$
61. $\mathrm{a}=8 \quad \mathrm{~b}=0.5$
62. $\mathrm{a}=4 \quad \mathrm{~b}=-8$
63. $a=3.6 \quad b=-20$
64. $a=6 \cdot 5 \quad b=-12$
65. $\mathrm{a}=25 \quad \mathrm{~b}=9 \quad \mathrm{c}=25$
66. $\mathrm{a}=30 \quad \mathrm{~b}=9 \quad \mathrm{c}=45$
67. $\mathrm{a}=22 \quad \mathrm{~b}=40 \quad \mathrm{c}=10$
68. $\max (0,220),(12,220) \min (6,20)$
69. $\max (12,35) \min (32,5)$
70. $\max (34.8,190) \min (16.8,-90)$
71.
72. (a) max $12.30 \mathrm{am} ; 15 \mathrm{~m} \quad \min 6.30 \mathrm{am} ; 3 \mathrm{~m}$
(b) 14.8 m
(c) 3.1 m
(d) 6 am and 7 am
